Default Clustering from Sparse Data Sets

Categorization with a very high missing data rate is seldom studied, especially from a non-probabilistic point of view. This paper proposes a new algorithm called default clustering that relies on default reasoning and uses the local search paradigm. Two kinds of experiments are considered: the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Velcin, J., Ganascia, J. -G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 979
container_issue
container_start_page 968
container_title
container_volume 3571
creator Velcin, J.
Ganascia, J. -G.
description Categorization with a very high missing data rate is seldom studied, especially from a non-probabilistic point of view. This paper proposes a new algorithm called default clustering that relies on default reasoning and uses the local search paradigm. Two kinds of experiments are considered: the first one presents the results obtained on artificial data sets, the second uses an original and real case where political stereotypes are extracted from newspaper articles at the end of the 19th century.
doi_str_mv 10.1007/11518655_81
format Conference Proceeding
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01490510v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h253t-218eaafe20f453a1e567796e64828c3961ac38aa4ba43b6815a8513ce966c8c93</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxdd_YK09-QVyEfQQ3dnZ3cweS6tWKHionpdp2Nho2oRsKvTb21BR5_Jg3m8ezBPiCuQdSJndAxgga4wnOBIjlxEaLRGISB6LAViAFFG7E3HRGypDZfFUDCRKlbpM47kYxfgh94NKKqKBuJmGgrdVl0yqbexCW27ek6Kt18mi4TaGZModJ4vQxUtxVnAVw-hHh-Lt8eF1MkvnL0_Pk_E8XSmDXaqAAnMRlCy0QYZgbJY5G6wmRTk6C5wjMesla1xaAsNkAPPgrM0pdzgUt4fcFVe-acs1tztfc-ln47nvdxK0kwbkF-zZ6wPbcMy5Klre5GX8vQLrHKCDv8zY9A-G1i_r-jN6kL6v1f-rFb8BwI1hBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Default Clustering from Sparse Data Sets</title><source>Springer Books</source><creator>Velcin, J. ; Ganascia, J. -G.</creator><contributor>Godo, Lluís</contributor><creatorcontrib>Velcin, J. ; Ganascia, J. -G. ; Godo, Lluís</creatorcontrib><description>Categorization with a very high missing data rate is seldom studied, especially from a non-probabilistic point of view. This paper proposes a new algorithm called default clustering that relies on default reasoning and uses the local search paradigm. Two kinds of experiments are considered: the first one presents the results obtained on artificial data sets, the second uses an original and real case where political stereotypes are extracted from newspaper articles at the end of the 19th century.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540273263</identifier><identifier>ISBN: 9783540273264</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318880</identifier><identifier>EISBN: 3540318887</identifier><identifier>DOI: 10.1007/11518655_81</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Conceptual Cluster ; Default Rule ; Exact sciences and technology ; Local Search ; Relative Cover ; Sparse Data</subject><ispartof>ECSQARU 2005 - 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2005, Vol.3571, p.968-979</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2262-045X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11518655_81$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11518655_81$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,885,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16991391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01490510$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Godo, Lluís</contributor><creatorcontrib>Velcin, J.</creatorcontrib><creatorcontrib>Ganascia, J. -G.</creatorcontrib><title>Default Clustering from Sparse Data Sets</title><title>ECSQARU 2005 - 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty</title><description>Categorization with a very high missing data rate is seldom studied, especially from a non-probabilistic point of view. This paper proposes a new algorithm called default clustering that relies on default reasoning and uses the local search paradigm. Two kinds of experiments are considered: the first one presents the results obtained on artificial data sets, the second uses an original and real case where political stereotypes are extracted from newspaper articles at the end of the 19th century.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Conceptual Cluster</subject><subject>Default Rule</subject><subject>Exact sciences and technology</subject><subject>Local Search</subject><subject>Relative Cover</subject><subject>Sparse Data</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540273263</isbn><isbn>9783540273264</isbn><isbn>9783540318880</isbn><isbn>3540318887</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE9Lw0AQxdd_YK09-QVyEfQQ3dnZ3cweS6tWKHionpdp2Nho2oRsKvTb21BR5_Jg3m8ezBPiCuQdSJndAxgga4wnOBIjlxEaLRGISB6LAViAFFG7E3HRGypDZfFUDCRKlbpM47kYxfgh94NKKqKBuJmGgrdVl0yqbexCW27ek6Kt18mi4TaGZModJ4vQxUtxVnAVw-hHh-Lt8eF1MkvnL0_Pk_E8XSmDXaqAAnMRlCy0QYZgbJY5G6wmRTk6C5wjMesla1xaAsNkAPPgrM0pdzgUt4fcFVe-acs1tztfc-ln47nvdxK0kwbkF-zZ6wPbcMy5Klre5GX8vQLrHKCDv8zY9A-G1i_r-jN6kL6v1f-rFb8BwI1hBw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Velcin, J.</creator><creator>Ganascia, J. -G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2262-045X</orcidid></search><sort><creationdate>2005</creationdate><title>Default Clustering from Sparse Data Sets</title><author>Velcin, J. ; Ganascia, J. -G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h253t-218eaafe20f453a1e567796e64828c3961ac38aa4ba43b6815a8513ce966c8c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Conceptual Cluster</topic><topic>Default Rule</topic><topic>Exact sciences and technology</topic><topic>Local Search</topic><topic>Relative Cover</topic><topic>Sparse Data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velcin, J.</creatorcontrib><creatorcontrib>Ganascia, J. -G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velcin, J.</au><au>Ganascia, J. -G.</au><au>Godo, Lluís</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Default Clustering from Sparse Data Sets</atitle><btitle>ECSQARU 2005 - 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty</btitle><date>2005</date><risdate>2005</risdate><volume>3571</volume><spage>968</spage><epage>979</epage><pages>968-979</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540273263</isbn><isbn>9783540273264</isbn><eisbn>9783540318880</eisbn><eisbn>3540318887</eisbn><abstract>Categorization with a very high missing data rate is seldom studied, especially from a non-probabilistic point of view. This paper proposes a new algorithm called default clustering that relies on default reasoning and uses the local search paradigm. Two kinds of experiments are considered: the first one presents the results obtained on artificial data sets, the second uses an original and real case where political stereotypes are extracted from newspaper articles at the end of the 19th century.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11518655_81</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2262-045X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof ECSQARU 2005 - 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2005, Vol.3571, p.968-979
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16991391
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Conceptual Cluster
Default Rule
Exact sciences and technology
Local Search
Relative Cover
Sparse Data
title Default Clustering from Sparse Data Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Default%20Clustering%20from%20Sparse%20Data%20Sets&rft.btitle=ECSQARU%202005%20-%208th%20European%20Conference%20on%20Symbolic%20and%20Quantitative%20Approaches%20to%20Reasoning%20with%20Uncertainty&rft.au=Velcin,%20J.&rft.date=2005&rft.volume=3571&rft.spage=968&rft.epage=979&rft.pages=968-979&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540273263&rft.isbn_list=9783540273264&rft_id=info:doi/10.1007/11518655_81&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_01490510v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318880&rft.eisbn_list=3540318887&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true