Online Interval Coloring and Variants

We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Epstein, Leah, Levy, Meital
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue
container_start_page 602
container_title
container_volume
creator Epstein, Leah
Levy, Meital
description We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].
doi_str_mv 10.1007/11523468_49
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16991355</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-910f4b759fd41628713612f9906479bfa7cef79cbdb309190f044efe484022ab3</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iVI68QWydGAI3PmcODeiqkClSl2A1XJSGwWCE9kREt-eVGXglhvu907vPSFuEO4QQN8jFpJUWRnFJ-KKCgWEJaM6FTMsEXMixWfHg9RFBXAuZkAgc9aKLsUipQ-YZhIRy5lY7kLXBpdtwujit-2yVd_1sQ3vmQ377M3G1oYxXYsLb7vkFn97Ll4f1y-r53y7e9qsHrb5IJHHnBG8qnXBfq-wlJVGKlF6ZiiV5tpb3Tivuan3NQEjgwelnHeqmsxKW9NcLI9_B5sa2_loQ9MmM8T2y8YfMwVlpKKYuNsjl4aDVxdN3fefySCYQ0nmX0n0CyfFUcc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online Interval Coloring and Variants</title><source>Springer Books</source><creator>Epstein, Leah ; Levy, Meital</creator><contributor>Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</contributor><creatorcontrib>Epstein, Leah ; Levy, Meital ; Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</creatorcontrib><description>We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540275800</identifier><identifier>ISBN: 9783540275800</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316914</identifier><identifier>EISBN: 9783540316916</identifier><identifier>DOI: 10.1007/11523468_49</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Automata. Abstract machines. Turing machines ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2005, p.602-613</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11523468_49$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11523468_49$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16991355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yung, Moti</contributor><contributor>Caires, Luís</contributor><contributor>Italiano, Giuseppe F.</contributor><contributor>Monteiro, Luís</contributor><contributor>Palamidessi, Catuscia</contributor><creatorcontrib>Epstein, Leah</creatorcontrib><creatorcontrib>Levy, Meital</creatorcontrib><title>Online Interval Coloring and Variants</title><title>Automata, Languages and Programming</title><description>We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].</description><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540275800</isbn><isbn>9783540275800</isbn><isbn>3540316914</isbn><isbn>9783540316916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAQxc0_iVI68QWydGAI3PmcODeiqkClSl2A1XJSGwWCE9kREt-eVGXglhvu907vPSFuEO4QQN8jFpJUWRnFJ-KKCgWEJaM6FTMsEXMixWfHg9RFBXAuZkAgc9aKLsUipQ-YZhIRy5lY7kLXBpdtwujit-2yVd_1sQ3vmQ377M3G1oYxXYsLb7vkFn97Ll4f1y-r53y7e9qsHrb5IJHHnBG8qnXBfq-wlJVGKlF6ZiiV5tpb3Tivuan3NQEjgwelnHeqmsxKW9NcLI9_B5sa2_loQ9MmM8T2y8YfMwVlpKKYuNsjl4aDVxdN3fefySCYQ0nmX0n0CyfFUcc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Epstein, Leah</creator><creator>Levy, Meital</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Online Interval Coloring and Variants</title><author>Epstein, Leah ; Levy, Meital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-910f4b759fd41628713612f9906479bfa7cef79cbdb309190f044efe484022ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epstein, Leah</creatorcontrib><creatorcontrib>Levy, Meital</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epstein, Leah</au><au>Levy, Meital</au><au>Yung, Moti</au><au>Caires, Luís</au><au>Italiano, Giuseppe F.</au><au>Monteiro, Luís</au><au>Palamidessi, Catuscia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online Interval Coloring and Variants</atitle><btitle>Automata, Languages and Programming</btitle><date>2005</date><risdate>2005</risdate><spage>602</spage><epage>613</epage><pages>602-613</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540275800</isbn><isbn>9783540275800</isbn><eisbn>3540316914</eisbn><eisbn>9783540316916</eisbn><abstract>We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11523468_49</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Automata, Languages and Programming, 2005, p.602-613
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16991355
source Springer Books
subjects Applied sciences
Automata. Abstract machines. Turing machines
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Online Interval Coloring and Variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20Interval%20Coloring%20and%20Variants&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Epstein,%20Leah&rft.date=2005&rft.spage=602&rft.epage=613&rft.pages=602-613&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540275800&rft.isbn_list=9783540275800&rft_id=info:doi/10.1007/11523468_49&rft_dat=%3Cpascalfrancis_sprin%3E16991355%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316914&rft.eisbn_list=9783540316916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true