Online Interval Coloring and Variants
We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interv...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | |
container_start_page | 602 |
container_title | |
container_volume | |
creator | Epstein, Leah Levy, Meital |
description | We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9]. |
doi_str_mv | 10.1007/11523468_49 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16991355</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-910f4b759fd41628713612f9906479bfa7cef79cbdb309190f044efe484022ab3</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iVI68QWydGAI3PmcODeiqkClSl2A1XJSGwWCE9kREt-eVGXglhvu907vPSFuEO4QQN8jFpJUWRnFJ-KKCgWEJaM6FTMsEXMixWfHg9RFBXAuZkAgc9aKLsUipQ-YZhIRy5lY7kLXBpdtwujit-2yVd_1sQ3vmQ377M3G1oYxXYsLb7vkFn97Ll4f1y-r53y7e9qsHrb5IJHHnBG8qnXBfq-wlJVGKlF6ZiiV5tpb3Tivuan3NQEjgwelnHeqmsxKW9NcLI9_B5sa2_loQ9MmM8T2y8YfMwVlpKKYuNsjl4aDVxdN3fefySCYQ0nmX0n0CyfFUcc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online Interval Coloring and Variants</title><source>Springer Books</source><creator>Epstein, Leah ; Levy, Meital</creator><contributor>Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</contributor><creatorcontrib>Epstein, Leah ; Levy, Meital ; Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</creatorcontrib><description>We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540275800</identifier><identifier>ISBN: 9783540275800</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316914</identifier><identifier>EISBN: 9783540316916</identifier><identifier>DOI: 10.1007/11523468_49</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Automata. Abstract machines. Turing machines ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2005, p.602-613</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11523468_49$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11523468_49$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16991355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yung, Moti</contributor><contributor>Caires, Luís</contributor><contributor>Italiano, Giuseppe F.</contributor><contributor>Monteiro, Luís</contributor><contributor>Palamidessi, Catuscia</contributor><creatorcontrib>Epstein, Leah</creatorcontrib><creatorcontrib>Levy, Meital</creatorcontrib><title>Online Interval Coloring and Variants</title><title>Automata, Languages and Programming</title><description>We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].</description><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540275800</isbn><isbn>9783540275800</isbn><isbn>3540316914</isbn><isbn>9783540316916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAQxc0_iVI68QWydGAI3PmcODeiqkClSl2A1XJSGwWCE9kREt-eVGXglhvu907vPSFuEO4QQN8jFpJUWRnFJ-KKCgWEJaM6FTMsEXMixWfHg9RFBXAuZkAgc9aKLsUipQ-YZhIRy5lY7kLXBpdtwujit-2yVd_1sQ3vmQ377M3G1oYxXYsLb7vkFn97Ll4f1y-r53y7e9qsHrb5IJHHnBG8qnXBfq-wlJVGKlF6ZiiV5tpb3Tivuan3NQEjgwelnHeqmsxKW9NcLI9_B5sa2_loQ9MmM8T2y8YfMwVlpKKYuNsjl4aDVxdN3fefySCYQ0nmX0n0CyfFUcc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Epstein, Leah</creator><creator>Levy, Meital</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Online Interval Coloring and Variants</title><author>Epstein, Leah ; Levy, Meital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-910f4b759fd41628713612f9906479bfa7cef79cbdb309190f044efe484022ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epstein, Leah</creatorcontrib><creatorcontrib>Levy, Meital</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epstein, Leah</au><au>Levy, Meital</au><au>Yung, Moti</au><au>Caires, Luís</au><au>Italiano, Giuseppe F.</au><au>Monteiro, Luís</au><au>Palamidessi, Catuscia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online Interval Coloring and Variants</atitle><btitle>Automata, Languages and Programming</btitle><date>2005</date><risdate>2005</risdate><spage>602</spage><epage>613</epage><pages>602-613</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540275800</isbn><isbn>9783540275800</isbn><eisbn>3540316914</eisbn><eisbn>9783540316916</eisbn><abstract>We study interval coloring problems and present new upper and lower bounds for several variants. We are interested in four problems, online coloring of intervals with and without bandwidth and a new problem called lazy online coloring again with and without bandwidth. We consider both general interval graphs and unit interval graphs. Specifically, we establish the difference between the two main problems which are interval coloring with and without bandwidth. We present the first non-trivial lower bound of 3.2609 for the problem with bandwidth. This improves the lower bound of 3 that follows from the tight results for interval coloring without bandwidth presented in [9].</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11523468_49</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Automata, Languages and Programming, 2005, p.602-613 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16991355 |
source | Springer Books |
subjects | Applied sciences Automata. Abstract machines. Turing machines Computer science control theory systems Exact sciences and technology Theoretical computing |
title | Online Interval Coloring and Variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20Interval%20Coloring%20and%20Variants&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Epstein,%20Leah&rft.date=2005&rft.spage=602&rft.epage=613&rft.pages=602-613&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540275800&rft.isbn_list=9783540275800&rft_id=info:doi/10.1007/11523468_49&rft_dat=%3Cpascalfrancis_sprin%3E16991355%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316914&rft.eisbn_list=9783540316916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |