The Generalized Deadlock Resolution Problem
In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | |
container_start_page | 853 |
container_title | |
container_volume | |
creator | Jain, Kamal Hajiaghayi, MohammadTaghi Talwar, Kunal |
description | In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small.
We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem.
Finally we give an LP-rounding approach and discuss some other natural variants. |
doi_str_mv | 10.1007/11523468_69 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16991268</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-5f2d9cb63df27001362f0ae52cccb3093a970b321778f4e16428b40f8d32ffc23</originalsourceid><addsrcrecordid>eNpNUDtPwzAYNC-JUjrxB7IwIBT4Ho4Tj6hAQaoEQmW2HMeG0DSp4jLArycoDNxywz2kOyHOEK4QIL9GzIilKozSe-KEMwmMSqPcFxNUiCmz1AejQHlWAByKCTBQqnPJx2IW4wcMGEKsaSIuV-8-WfjW97apv32V3HpbNZ1bJy8-ds3nru7a5LnvysZvTsVRsE30sz-eitf7u9X8IV0-LR7nN8t0S6h3aRao0q5UXAXKAZAVBbA-I-dcyaDZ6hxKJszzIkiPSlJRSghFxRSCI56K87F3a6OzTeht6-potn29sf2XGeZqJFUMvovRFwepffO9KbtuHQ2C-b3K_LuKfwC6w1Ra</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Generalized Deadlock Resolution Problem</title><source>Springer Books</source><creator>Jain, Kamal ; Hajiaghayi, MohammadTaghi ; Talwar, Kunal</creator><contributor>Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</contributor><creatorcontrib>Jain, Kamal ; Hajiaghayi, MohammadTaghi ; Talwar, Kunal ; Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</creatorcontrib><description>In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small.
We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem.
Finally we give an LP-rounding approach and discuss some other natural variants.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540275800</identifier><identifier>ISBN: 9783540275800</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316914</identifier><identifier>EISBN: 9783540316916</identifier><identifier>DOI: 10.1007/11523468_69</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Approximation Algorithm ; Automata. Abstract machines. Turing machines ; Computer science; control theory; systems ; Deadlock Detection ; Distribute Database System ; Exact sciences and technology ; Mixed Graph ; Steiner Tree ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2005, p.853-865</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11523468_69$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11523468_69$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16991268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yung, Moti</contributor><contributor>Caires, Luís</contributor><contributor>Italiano, Giuseppe F.</contributor><contributor>Monteiro, Luís</contributor><contributor>Palamidessi, Catuscia</contributor><creatorcontrib>Jain, Kamal</creatorcontrib><creatorcontrib>Hajiaghayi, MohammadTaghi</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><title>The Generalized Deadlock Resolution Problem</title><title>Automata, Languages and Programming</title><description>In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small.
We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem.
Finally we give an LP-rounding approach and discuss some other natural variants.</description><subject>Applied sciences</subject><subject>Approximation Algorithm</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Computer science; control theory; systems</subject><subject>Deadlock Detection</subject><subject>Distribute Database System</subject><subject>Exact sciences and technology</subject><subject>Mixed Graph</subject><subject>Steiner Tree</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540275800</isbn><isbn>9783540275800</isbn><isbn>3540316914</isbn><isbn>9783540316916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUDtPwzAYNC-JUjrxB7IwIBT4Ho4Tj6hAQaoEQmW2HMeG0DSp4jLArycoDNxywz2kOyHOEK4QIL9GzIilKozSe-KEMwmMSqPcFxNUiCmz1AejQHlWAByKCTBQqnPJx2IW4wcMGEKsaSIuV-8-WfjW97apv32V3HpbNZ1bJy8-ds3nru7a5LnvysZvTsVRsE30sz-eitf7u9X8IV0-LR7nN8t0S6h3aRao0q5UXAXKAZAVBbA-I-dcyaDZ6hxKJszzIkiPSlJRSghFxRSCI56K87F3a6OzTeht6-potn29sf2XGeZqJFUMvovRFwepffO9KbtuHQ2C-b3K_LuKfwC6w1Ra</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Jain, Kamal</creator><creator>Hajiaghayi, MohammadTaghi</creator><creator>Talwar, Kunal</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>The Generalized Deadlock Resolution Problem</title><author>Jain, Kamal ; Hajiaghayi, MohammadTaghi ; Talwar, Kunal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-5f2d9cb63df27001362f0ae52cccb3093a970b321778f4e16428b40f8d32ffc23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Approximation Algorithm</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Computer science; control theory; systems</topic><topic>Deadlock Detection</topic><topic>Distribute Database System</topic><topic>Exact sciences and technology</topic><topic>Mixed Graph</topic><topic>Steiner Tree</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Kamal</creatorcontrib><creatorcontrib>Hajiaghayi, MohammadTaghi</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Kamal</au><au>Hajiaghayi, MohammadTaghi</au><au>Talwar, Kunal</au><au>Yung, Moti</au><au>Caires, Luís</au><au>Italiano, Giuseppe F.</au><au>Monteiro, Luís</au><au>Palamidessi, Catuscia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Generalized Deadlock Resolution Problem</atitle><btitle>Automata, Languages and Programming</btitle><date>2005</date><risdate>2005</risdate><spage>853</spage><epage>865</epage><pages>853-865</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540275800</isbn><isbn>9783540275800</isbn><eisbn>3540316914</eisbn><eisbn>9783540316916</eisbn><abstract>In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small.
We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem.
Finally we give an LP-rounding approach and discuss some other natural variants.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11523468_69</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Automata, Languages and Programming, 2005, p.853-865 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16991268 |
source | Springer Books |
subjects | Applied sciences Approximation Algorithm Automata. Abstract machines. Turing machines Computer science control theory systems Deadlock Detection Distribute Database System Exact sciences and technology Mixed Graph Steiner Tree Theoretical computing |
title | The Generalized Deadlock Resolution Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Generalized%20Deadlock%20Resolution%20Problem&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Jain,%20Kamal&rft.date=2005&rft.spage=853&rft.epage=865&rft.pages=853-865&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540275800&rft.isbn_list=9783540275800&rft_id=info:doi/10.1007/11523468_69&rft_dat=%3Cpascalfrancis_sprin%3E16991268%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316914&rft.eisbn_list=9783540316916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |