The Generalized Deadlock Resolution Problem

In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jain, Kamal, Hajiaghayi, MohammadTaghi, Talwar, Kunal
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue
container_start_page 853
container_title
container_volume
creator Jain, Kamal
Hajiaghayi, MohammadTaghi
Talwar, Kunal
description In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small. We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem. Finally we give an LP-rounding approach and discuss some other natural variants.
doi_str_mv 10.1007/11523468_69
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16991268</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-5f2d9cb63df27001362f0ae52cccb3093a970b321778f4e16428b40f8d32ffc23</originalsourceid><addsrcrecordid>eNpNUDtPwzAYNC-JUjrxB7IwIBT4Ho4Tj6hAQaoEQmW2HMeG0DSp4jLArycoDNxywz2kOyHOEK4QIL9GzIilKozSe-KEMwmMSqPcFxNUiCmz1AejQHlWAByKCTBQqnPJx2IW4wcMGEKsaSIuV-8-WfjW97apv32V3HpbNZ1bJy8-ds3nru7a5LnvysZvTsVRsE30sz-eitf7u9X8IV0-LR7nN8t0S6h3aRao0q5UXAXKAZAVBbA-I-dcyaDZ6hxKJszzIkiPSlJRSghFxRSCI56K87F3a6OzTeht6-potn29sf2XGeZqJFUMvovRFwepffO9KbtuHQ2C-b3K_LuKfwC6w1Ra</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Generalized Deadlock Resolution Problem</title><source>Springer Books</source><creator>Jain, Kamal ; Hajiaghayi, MohammadTaghi ; Talwar, Kunal</creator><contributor>Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</contributor><creatorcontrib>Jain, Kamal ; Hajiaghayi, MohammadTaghi ; Talwar, Kunal ; Yung, Moti ; Caires, Luís ; Italiano, Giuseppe F. ; Monteiro, Luís ; Palamidessi, Catuscia</creatorcontrib><description>In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small. We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem. Finally we give an LP-rounding approach and discuss some other natural variants.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540275800</identifier><identifier>ISBN: 9783540275800</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316914</identifier><identifier>EISBN: 9783540316916</identifier><identifier>DOI: 10.1007/11523468_69</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Approximation Algorithm ; Automata. Abstract machines. Turing machines ; Computer science; control theory; systems ; Deadlock Detection ; Distribute Database System ; Exact sciences and technology ; Mixed Graph ; Steiner Tree ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2005, p.853-865</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11523468_69$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11523468_69$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16991268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yung, Moti</contributor><contributor>Caires, Luís</contributor><contributor>Italiano, Giuseppe F.</contributor><contributor>Monteiro, Luís</contributor><contributor>Palamidessi, Catuscia</contributor><creatorcontrib>Jain, Kamal</creatorcontrib><creatorcontrib>Hajiaghayi, MohammadTaghi</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><title>The Generalized Deadlock Resolution Problem</title><title>Automata, Languages and Programming</title><description>In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small. We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem. Finally we give an LP-rounding approach and discuss some other natural variants.</description><subject>Applied sciences</subject><subject>Approximation Algorithm</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Computer science; control theory; systems</subject><subject>Deadlock Detection</subject><subject>Distribute Database System</subject><subject>Exact sciences and technology</subject><subject>Mixed Graph</subject><subject>Steiner Tree</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540275800</isbn><isbn>9783540275800</isbn><isbn>3540316914</isbn><isbn>9783540316916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUDtPwzAYNC-JUjrxB7IwIBT4Ho4Tj6hAQaoEQmW2HMeG0DSp4jLArycoDNxywz2kOyHOEK4QIL9GzIilKozSe-KEMwmMSqPcFxNUiCmz1AejQHlWAByKCTBQqnPJx2IW4wcMGEKsaSIuV-8-WfjW97apv32V3HpbNZ1bJy8-ds3nru7a5LnvysZvTsVRsE30sz-eitf7u9X8IV0-LR7nN8t0S6h3aRao0q5UXAXKAZAVBbA-I-dcyaDZ6hxKJszzIkiPSlJRSghFxRSCI56K87F3a6OzTeht6-potn29sf2XGeZqJFUMvovRFwepffO9KbtuHQ2C-b3K_LuKfwC6w1Ra</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Jain, Kamal</creator><creator>Hajiaghayi, MohammadTaghi</creator><creator>Talwar, Kunal</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>The Generalized Deadlock Resolution Problem</title><author>Jain, Kamal ; Hajiaghayi, MohammadTaghi ; Talwar, Kunal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-5f2d9cb63df27001362f0ae52cccb3093a970b321778f4e16428b40f8d32ffc23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Approximation Algorithm</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Computer science; control theory; systems</topic><topic>Deadlock Detection</topic><topic>Distribute Database System</topic><topic>Exact sciences and technology</topic><topic>Mixed Graph</topic><topic>Steiner Tree</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Kamal</creatorcontrib><creatorcontrib>Hajiaghayi, MohammadTaghi</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Kamal</au><au>Hajiaghayi, MohammadTaghi</au><au>Talwar, Kunal</au><au>Yung, Moti</au><au>Caires, Luís</au><au>Italiano, Giuseppe F.</au><au>Monteiro, Luís</au><au>Palamidessi, Catuscia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Generalized Deadlock Resolution Problem</atitle><btitle>Automata, Languages and Programming</btitle><date>2005</date><risdate>2005</risdate><spage>853</spage><epage>865</epage><pages>853-865</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540275800</isbn><isbn>9783540275800</isbn><eisbn>3540316914</eisbn><eisbn>9783540316916</eisbn><abstract>In this paper we initiate the study of the AND-OR directed feedback vertex set problem from the viewpoint of approximation algorithms. This AND-OR feedback vertex set problem is motivated by a practical deadlock resolution problem that appears in the development of distributed database systems. This problem also turns out be a natural generalization of the directed feedback vertex set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find a minimal solution for this problem. Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum cost solution. We show that finding the minimum cost solution is as hard as the directed Steiner tree problem (and thus Ω(log2n) hard to approximate). On the positive side, we give algorithms which work well when the number of writers (AND nodes) or the number of readers (OR nodes) are small. We also consider a variant that we call permanent deadlock resolution where we cannot specify an execution order for the surviving processes; they should get completed even if they were scheduled adversarially. When all processes are writers (AND nodes), we give an O(log n log log n) approximation for this problem. Finally we give an LP-rounding approach and discuss some other natural variants.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11523468_69</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Automata, Languages and Programming, 2005, p.853-865
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16991268
source Springer Books
subjects Applied sciences
Approximation Algorithm
Automata. Abstract machines. Turing machines
Computer science
control theory
systems
Deadlock Detection
Distribute Database System
Exact sciences and technology
Mixed Graph
Steiner Tree
Theoretical computing
title The Generalized Deadlock Resolution Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Generalized%20Deadlock%20Resolution%20Problem&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Jain,%20Kamal&rft.date=2005&rft.spage=853&rft.epage=865&rft.pages=853-865&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540275800&rft.isbn_list=9783540275800&rft_id=info:doi/10.1007/11523468_69&rft_dat=%3Cpascalfrancis_sprin%3E16991268%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316914&rft.eisbn_list=9783540316916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true