Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks

In this paper, we propose a computational method for estimating gene networks by the Boolean network model. The Boolean networks have some practical problems in analyzing DNA microarray gene expression data: One is the choice of threshold value for discretization of gene expression data, since expre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hirose, Osamu, Nariai, Naoki, Tamada, Yoshinori, Bannai, Hideo, Imoto, Seiya, Miyano, Satoru
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue
container_start_page 349
container_title
container_volume
creator Hirose, Osamu
Nariai, Naoki
Tamada, Yoshinori
Bannai, Hideo
Imoto, Seiya
Miyano, Satoru
description In this paper, we propose a computational method for estimating gene networks by the Boolean network model. The Boolean networks have some practical problems in analyzing DNA microarray gene expression data: One is the choice of threshold value for discretization of gene expression data, since expression data take continuous variables. The other problem is that it is often the case that the optimal gene network is not determined uniquely and it is difficult to choose the optimal one from the candidates by using expression data only. To solve these problems, we use the binding location data produced by Lee et al.[8] together with expression data and illustrate a strategy to decide the optimal threshold and gene network. To show the effectiveness of the proposed method, we analyze Saccharomyces cerevisiae cell cycle gene expression data as a real application.
doi_str_mv 10.1007/11424857_38
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16990916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16990916</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-a91eae64ef48b06165ea4817f5b3a9354889b23e7ead849e7ddccffb24476ced3</originalsourceid><addsrcrecordid>eNpNkDlPw0AUhJdLIoRU_IFtKCgMe3mPEkIISBE00CFZz_ZzZJLsWrsWx7_HUQDxmlfMNyPNEHLG2SVnzFxxroSyuSmk3SMTZ6zMFZOCqVzvkxHXnGdSKndATraCyK0W7JCMmGQic0bJYzJJ6Y0NJ7m2Uo7I6yz17Qb61i_pHD3SR-w_Qlwl2sSwobPPLmJKbfD0Fnqg4Gt60_p6iy9CNfh-lfcW6E0IawT_l3FKjhpYJ5z8_DF5uZs9T--zxdP8YXq9yDrBXZ-B4wioFTbKlkxznSMoy02TlxLc0MRaVwqJBqG2yqGp66pqmlIoZXSFtRyT811uB6mCdRPBV20qujg0i18F184xx_XAXey4NEh-ibEoQ1ilgrNiO2_xb175DQWfZ_A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks</title><source>Springer Books</source><creator>Hirose, Osamu ; Nariai, Naoki ; Tamada, Yoshinori ; Bannai, Hideo ; Imoto, Seiya ; Miyano, Satoru</creator><contributor>Gervasi, Osvaldo ; Gavrilova, Marina L. ; Taniar, David ; Laganà, Antonio ; Mun, Youngsong ; Lee, Heow Pueh ; Tan, Chih Jeng Kenneth ; Kumar, Vipin</contributor><creatorcontrib>Hirose, Osamu ; Nariai, Naoki ; Tamada, Yoshinori ; Bannai, Hideo ; Imoto, Seiya ; Miyano, Satoru ; Gervasi, Osvaldo ; Gavrilova, Marina L. ; Taniar, David ; Laganà, Antonio ; Mun, Youngsong ; Lee, Heow Pueh ; Tan, Chih Jeng Kenneth ; Kumar, Vipin</creatorcontrib><description>In this paper, we propose a computational method for estimating gene networks by the Boolean network model. The Boolean networks have some practical problems in analyzing DNA microarray gene expression data: One is the choice of threshold value for discretization of gene expression data, since expression data take continuous variables. The other problem is that it is often the case that the optimal gene network is not determined uniquely and it is difficult to choose the optimal one from the candidates by using expression data only. To solve these problems, we use the binding location data produced by Lee et al.[8] together with expression data and illustrate a strategy to decide the optimal threshold and gene network. To show the effectiveness of the proposed method, we analyze Saccharomyces cerevisiae cell cycle gene expression data as a real application.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540258620</identifier><identifier>ISBN: 9783540258629</identifier><identifier>ISBN: 9783540258605</identifier><identifier>ISBN: 3540258604</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320456</identifier><identifier>EISBN: 3540320458</identifier><identifier>DOI: 10.1007/11424857_38</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Boolean Function ; Computer science; control theory; systems ; Exact sciences and technology ; Expression Data ; Gene Expression Data ; Gene Network ; Score Function</subject><ispartof>Computational Science and Its Applications – ICCSA 2005, 2005, p.349-356</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11424857_38$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11424857_38$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16990916$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gervasi, Osvaldo</contributor><contributor>Gavrilova, Marina L.</contributor><contributor>Taniar, David</contributor><contributor>Laganà, Antonio</contributor><contributor>Mun, Youngsong</contributor><contributor>Lee, Heow Pueh</contributor><contributor>Tan, Chih Jeng Kenneth</contributor><contributor>Kumar, Vipin</contributor><creatorcontrib>Hirose, Osamu</creatorcontrib><creatorcontrib>Nariai, Naoki</creatorcontrib><creatorcontrib>Tamada, Yoshinori</creatorcontrib><creatorcontrib>Bannai, Hideo</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><title>Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks</title><title>Computational Science and Its Applications – ICCSA 2005</title><description>In this paper, we propose a computational method for estimating gene networks by the Boolean network model. The Boolean networks have some practical problems in analyzing DNA microarray gene expression data: One is the choice of threshold value for discretization of gene expression data, since expression data take continuous variables. The other problem is that it is often the case that the optimal gene network is not determined uniquely and it is difficult to choose the optimal one from the candidates by using expression data only. To solve these problems, we use the binding location data produced by Lee et al.[8] together with expression data and illustrate a strategy to decide the optimal threshold and gene network. To show the effectiveness of the proposed method, we analyze Saccharomyces cerevisiae cell cycle gene expression data as a real application.</description><subject>Applied sciences</subject><subject>Boolean Function</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Expression Data</subject><subject>Gene Expression Data</subject><subject>Gene Network</subject><subject>Score Function</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540258620</isbn><isbn>9783540258629</isbn><isbn>9783540258605</isbn><isbn>3540258604</isbn><isbn>9783540320456</isbn><isbn>3540320458</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDlPw0AUhJdLIoRU_IFtKCgMe3mPEkIISBE00CFZz_ZzZJLsWrsWx7_HUQDxmlfMNyPNEHLG2SVnzFxxroSyuSmk3SMTZ6zMFZOCqVzvkxHXnGdSKndATraCyK0W7JCMmGQic0bJYzJJ6Y0NJ7m2Uo7I6yz17Qb61i_pHD3SR-w_Qlwl2sSwobPPLmJKbfD0Fnqg4Gt60_p6iy9CNfh-lfcW6E0IawT_l3FKjhpYJ5z8_DF5uZs9T--zxdP8YXq9yDrBXZ-B4wioFTbKlkxznSMoy02TlxLc0MRaVwqJBqG2yqGp66pqmlIoZXSFtRyT811uB6mCdRPBV20qujg0i18F184xx_XAXey4NEh-ibEoQ1ilgrNiO2_xb175DQWfZ_A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hirose, Osamu</creator><creator>Nariai, Naoki</creator><creator>Tamada, Yoshinori</creator><creator>Bannai, Hideo</creator><creator>Imoto, Seiya</creator><creator>Miyano, Satoru</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks</title><author>Hirose, Osamu ; Nariai, Naoki ; Tamada, Yoshinori ; Bannai, Hideo ; Imoto, Seiya ; Miyano, Satoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-a91eae64ef48b06165ea4817f5b3a9354889b23e7ead849e7ddccffb24476ced3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Boolean Function</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Expression Data</topic><topic>Gene Expression Data</topic><topic>Gene Network</topic><topic>Score Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirose, Osamu</creatorcontrib><creatorcontrib>Nariai, Naoki</creatorcontrib><creatorcontrib>Tamada, Yoshinori</creatorcontrib><creatorcontrib>Bannai, Hideo</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirose, Osamu</au><au>Nariai, Naoki</au><au>Tamada, Yoshinori</au><au>Bannai, Hideo</au><au>Imoto, Seiya</au><au>Miyano, Satoru</au><au>Gervasi, Osvaldo</au><au>Gavrilova, Marina L.</au><au>Taniar, David</au><au>Laganà, Antonio</au><au>Mun, Youngsong</au><au>Lee, Heow Pueh</au><au>Tan, Chih Jeng Kenneth</au><au>Kumar, Vipin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks</atitle><btitle>Computational Science and Its Applications – ICCSA 2005</btitle><date>2005</date><risdate>2005</risdate><spage>349</spage><epage>356</epage><pages>349-356</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540258620</isbn><isbn>9783540258629</isbn><isbn>9783540258605</isbn><isbn>3540258604</isbn><eisbn>9783540320456</eisbn><eisbn>3540320458</eisbn><abstract>In this paper, we propose a computational method for estimating gene networks by the Boolean network model. The Boolean networks have some practical problems in analyzing DNA microarray gene expression data: One is the choice of threshold value for discretization of gene expression data, since expression data take continuous variables. The other problem is that it is often the case that the optimal gene network is not determined uniquely and it is difficult to choose the optimal one from the candidates by using expression data only. To solve these problems, we use the binding location data produced by Lee et al.[8] together with expression data and illustrate a strategy to decide the optimal threshold and gene network. To show the effectiveness of the proposed method, we analyze Saccharomyces cerevisiae cell cycle gene expression data as a real application.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11424857_38</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science and Its Applications – ICCSA 2005, 2005, p.349-356
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16990916
source Springer Books
subjects Applied sciences
Boolean Function
Computer science
control theory
systems
Exact sciences and technology
Expression Data
Gene Expression Data
Gene Network
Score Function
title Estimating Gene Networks from Expression Data and Binding Location Data via Boolean Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimating%20Gene%20Networks%20from%20Expression%20Data%20and%20Binding%20Location%20Data%20via%20Boolean%20Networks&rft.btitle=Computational%20Science%20and%20Its%20Applications%20%E2%80%93%20ICCSA%202005&rft.au=Hirose,%20Osamu&rft.date=2005&rft.spage=349&rft.epage=356&rft.pages=349-356&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540258620&rft.isbn_list=9783540258629&rft.isbn_list=9783540258605&rft.isbn_list=3540258604&rft_id=info:doi/10.1007/11424857_38&rft_dat=%3Cpascalfrancis_sprin%3E16990916%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320456&rft.eisbn_list=3540320458&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true