Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch
Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing contro...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2005-07, Vol.45 (7), p.557-564 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | 7 |
container_start_page | 557 |
container_title | Nuclear fusion |
container_volume | 45 |
creator | Drake, J.R Brunsell, P.R Yadikin, D Cecconello, M Malmberg, J.A Gregoratto, D Paccagnella, R Bolzonella, T Manduchi, G Marrelli, L Ortolani, S Spizzo, G Zanca, P Bondeson, A Liu, Y.Q |
description | Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic. |
doi_str_mv | 10.1088/0029-5515/45/7/002 |
format | Article |
fullrecord | <record><control><sourceid>swepub_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16988432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kth_5426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1dc5ff1bcb62d6e20e595a2d6b3206c1967cf33e9243697e43d84779ae06319b3</originalsourceid><addsrcrecordid>eNp9kU9rFDEYxoMouFa_gKdcPIhMN_9n5rjUVQsFpaziLWSSN93odDIkaVfxy5txZT0UPCXPm9_zkDxB6CUl55R03ZoQ1jdSUrkWct0u8hFa0VbQRnCmHqPVCXiKnuX8jRAqKOcr9Gv7Y4YUbmEqZsRmcrjsISYowVady50LkHH02NgS7gHbOJUUx2WSIIf8Z3gw44hvowN8k-Kh7HGYlhi8_bq73nzCO3Zd4XtIGVzjA4wOz2Gy--foiTdjhhd_1zP0-d12d_Ghufr4_vJic9VY3snSUGel93Swg2JOASMge2nqduCMKEt71VrPOfRMcNW3ILjrRNv2BojitB_4GXpzzM0HmO8GPdf3mvRTRxP02_Blo2O60d_LXkvBVKXZkbYp5pzAn3hK9FK2XrrUS5daSN0usppeHU2zybU4n8xkQ_7nVH3X1Z-o3OsjF-J8On2Yp2fnK9s8ZP9zh9_Bppq1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch</title><source>Institute of Physics Journals</source><creator>Drake, J.R ; Brunsell, P.R ; Yadikin, D ; Cecconello, M ; Malmberg, J.A ; Gregoratto, D ; Paccagnella, R ; Bolzonella, T ; Manduchi, G ; Marrelli, L ; Ortolani, S ; Spizzo, G ; Zanca, P ; Bondeson, A ; Liu, Y.Q</creator><creatorcontrib>Drake, J.R ; Brunsell, P.R ; Yadikin, D ; Cecconello, M ; Malmberg, J.A ; Gregoratto, D ; Paccagnella, R ; Bolzonella, T ; Manduchi, G ; Marrelli, L ; Ortolani, S ; Spizzo, G ; Zanca, P ; Bondeson, A ; Liu, Y.Q</creatorcontrib><description>Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.</description><identifier>ISSN: 0029-5515</identifier><identifier>ISSN: 1741-4326</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/45/7/002</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Astron, cusp, and other magnetic traps ; Computer simulation ; Control systems ; Electrical engineering, electronics and photonics ; Electrophysics ; Elektrofysik ; Elektroteknik, elektronik och fotonik ; Exact sciences and technology ; Feedback ; Field-reversed configurations, rotamaks, astrons, ion rings, magnetized target fusion, and cusps ; Fourier transforms ; Harmonic analysis ; Ideal & resistive mhd modes; kinetic modes ; Magnetic confinement and equilibrium ; Magnetohydrodynamics ; Mathematical models ; Perturbation techniques ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Pinch effect ; Plasma macroinstabilities (hydromagnetic, eg, kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.) ; Plasma macroinstabilities (magnetohydrodynamic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, rayleigh-taylor, etc.) ; Plasma theory ; TECHNOLOGY ; TEKNIKVETENSKAP ; Vacuum ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Nuclear fusion, 2005-07, Vol.45 (7), p.557-564</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1dc5ff1bcb62d6e20e595a2d6b3206c1967cf33e9243697e43d84779ae06319b3</citedby><cites>FETCH-LOGICAL-c385t-1dc5ff1bcb62d6e20e595a2d6b3206c1967cf33e9243697e43d84779ae06319b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/45/7/002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,782,786,887,27931,27932,53837,53917</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16988432$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-5426$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Drake, J.R</creatorcontrib><creatorcontrib>Brunsell, P.R</creatorcontrib><creatorcontrib>Yadikin, D</creatorcontrib><creatorcontrib>Cecconello, M</creatorcontrib><creatorcontrib>Malmberg, J.A</creatorcontrib><creatorcontrib>Gregoratto, D</creatorcontrib><creatorcontrib>Paccagnella, R</creatorcontrib><creatorcontrib>Bolzonella, T</creatorcontrib><creatorcontrib>Manduchi, G</creatorcontrib><creatorcontrib>Marrelli, L</creatorcontrib><creatorcontrib>Ortolani, S</creatorcontrib><creatorcontrib>Spizzo, G</creatorcontrib><creatorcontrib>Zanca, P</creatorcontrib><creatorcontrib>Bondeson, A</creatorcontrib><creatorcontrib>Liu, Y.Q</creatorcontrib><title>Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch</title><title>Nuclear fusion</title><description>Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.</description><subject>Astron, cusp, and other magnetic traps</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Electrical engineering, electronics and photonics</subject><subject>Electrophysics</subject><subject>Elektrofysik</subject><subject>Elektroteknik, elektronik och fotonik</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Field-reversed configurations, rotamaks, astrons, ion rings, magnetized target fusion, and cusps</subject><subject>Fourier transforms</subject><subject>Harmonic analysis</subject><subject>Ideal & resistive mhd modes; kinetic modes</subject><subject>Magnetic confinement and equilibrium</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Perturbation techniques</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Pinch effect</subject><subject>Plasma macroinstabilities (hydromagnetic, eg, kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.)</subject><subject>Plasma macroinstabilities (magnetohydrodynamic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, rayleigh-taylor, etc.)</subject><subject>Plasma theory</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Vacuum</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0029-5515</issn><issn>1741-4326</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFDEYxoMouFa_gKdcPIhMN_9n5rjUVQsFpaziLWSSN93odDIkaVfxy5txZT0UPCXPm9_zkDxB6CUl55R03ZoQ1jdSUrkWct0u8hFa0VbQRnCmHqPVCXiKnuX8jRAqKOcr9Gv7Y4YUbmEqZsRmcrjsISYowVady50LkHH02NgS7gHbOJUUx2WSIIf8Z3gw44hvowN8k-Kh7HGYlhi8_bq73nzCO3Zd4XtIGVzjA4wOz2Gy--foiTdjhhd_1zP0-d12d_Ghufr4_vJic9VY3snSUGel93Swg2JOASMge2nqduCMKEt71VrPOfRMcNW3ILjrRNv2BojitB_4GXpzzM0HmO8GPdf3mvRTRxP02_Blo2O60d_LXkvBVKXZkbYp5pzAn3hK9FK2XrrUS5daSN0usppeHU2zybU4n8xkQ_7nVH3X1Z-o3OsjF-J8On2Yp2fnK9s8ZP9zh9_Bppq1</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Drake, J.R</creator><creator>Brunsell, P.R</creator><creator>Yadikin, D</creator><creator>Cecconello, M</creator><creator>Malmberg, J.A</creator><creator>Gregoratto, D</creator><creator>Paccagnella, R</creator><creator>Bolzonella, T</creator><creator>Manduchi, G</creator><creator>Marrelli, L</creator><creator>Ortolani, S</creator><creator>Spizzo, G</creator><creator>Zanca, P</creator><creator>Bondeson, A</creator><creator>Liu, Y.Q</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20050701</creationdate><title>Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch</title><author>Drake, J.R ; Brunsell, P.R ; Yadikin, D ; Cecconello, M ; Malmberg, J.A ; Gregoratto, D ; Paccagnella, R ; Bolzonella, T ; Manduchi, G ; Marrelli, L ; Ortolani, S ; Spizzo, G ; Zanca, P ; Bondeson, A ; Liu, Y.Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1dc5ff1bcb62d6e20e595a2d6b3206c1967cf33e9243697e43d84779ae06319b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Astron, cusp, and other magnetic traps</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Electrical engineering, electronics and photonics</topic><topic>Electrophysics</topic><topic>Elektrofysik</topic><topic>Elektroteknik, elektronik och fotonik</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Field-reversed configurations, rotamaks, astrons, ion rings, magnetized target fusion, and cusps</topic><topic>Fourier transforms</topic><topic>Harmonic analysis</topic><topic>Ideal & resistive mhd modes; kinetic modes</topic><topic>Magnetic confinement and equilibrium</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Perturbation techniques</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Pinch effect</topic><topic>Plasma macroinstabilities (hydromagnetic, eg, kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.)</topic><topic>Plasma macroinstabilities (magnetohydrodynamic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, rayleigh-taylor, etc.)</topic><topic>Plasma theory</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Vacuum</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drake, J.R</creatorcontrib><creatorcontrib>Brunsell, P.R</creatorcontrib><creatorcontrib>Yadikin, D</creatorcontrib><creatorcontrib>Cecconello, M</creatorcontrib><creatorcontrib>Malmberg, J.A</creatorcontrib><creatorcontrib>Gregoratto, D</creatorcontrib><creatorcontrib>Paccagnella, R</creatorcontrib><creatorcontrib>Bolzonella, T</creatorcontrib><creatorcontrib>Manduchi, G</creatorcontrib><creatorcontrib>Marrelli, L</creatorcontrib><creatorcontrib>Ortolani, S</creatorcontrib><creatorcontrib>Spizzo, G</creatorcontrib><creatorcontrib>Zanca, P</creatorcontrib><creatorcontrib>Bondeson, A</creatorcontrib><creatorcontrib>Liu, Y.Q</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drake, J.R</au><au>Brunsell, P.R</au><au>Yadikin, D</au><au>Cecconello, M</au><au>Malmberg, J.A</au><au>Gregoratto, D</au><au>Paccagnella, R</au><au>Bolzonella, T</au><au>Manduchi, G</au><au>Marrelli, L</au><au>Ortolani, S</au><au>Spizzo, G</au><au>Zanca, P</au><au>Bondeson, A</au><au>Liu, Y.Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch</atitle><jtitle>Nuclear fusion</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>45</volume><issue>7</issue><spage>557</spage><epage>564</epage><pages>557-564</pages><issn>0029-5515</issn><issn>1741-4326</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0029-5515/45/7/002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2005-07, Vol.45 (7), p.557-564 |
issn | 0029-5515 1741-4326 1741-4326 |
language | eng |
recordid | cdi_pascalfrancis_primary_16988432 |
source | Institute of Physics Journals |
subjects | Astron, cusp, and other magnetic traps Computer simulation Control systems Electrical engineering, electronics and photonics Electrophysics Elektrofysik Elektroteknik, elektronik och fotonik Exact sciences and technology Feedback Field-reversed configurations, rotamaks, astrons, ion rings, magnetized target fusion, and cusps Fourier transforms Harmonic analysis Ideal & resistive mhd modes kinetic modes Magnetic confinement and equilibrium Magnetohydrodynamics Mathematical models Perturbation techniques Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Pinch effect Plasma macroinstabilities (hydromagnetic, eg, kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.) Plasma macroinstabilities (magnetohydrodynamic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, rayleigh-taylor, etc.) Plasma theory TECHNOLOGY TEKNIKVETENSKAP Vacuum Waves, oscillations, and instabilities in plasmas and intense beams |
title | Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20theoretical%20studies%20of%20active%20control%20of%20resistive%20wall%20mode%20growth%20in%20the%20EXTRAP%20T2R%20reversed-field%20pinch&rft.jtitle=Nuclear%20fusion&rft.au=Drake,%20J.R&rft.date=2005-07-01&rft.volume=45&rft.issue=7&rft.spage=557&rft.epage=564&rft.pages=557-564&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/45/7/002&rft_dat=%3Cswepub_pasca%3Eoai_DiVA_org_kth_5426%3C/swepub_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |