Comparisons between MCNP, EGS4 and experiment for clinical electron beams

Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 1999-03, Vol.44 (3), p.705-717
Hauptverfasser: Jeraj, Robert, Keall, Paul J, Ostwald, Patricia M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 3
container_start_page 705
container_title Physics in medicine & biology
container_volume 44
creator Jeraj, Robert
Keall, Paul J
Ostwald, Patricia M
description Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.
doi_str_mv 10.1088/0031-9155/44/3/013
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1698309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69702194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqt_wIPsQQTBtZMmm02OstQq-AXqOaTZCazsl8kW9d-b0qKC4GkC87yTmYeQIwoXFKScADCaKpplE84nbAKUbZERZYKmIhOwTUbfwB7ZD-EVgFI55btkj8I0PoGPyE3RNb3xVejakCxweEdsk7vi_vE8mc2feGLaMsGPHn3VYDskrvOJrau2sqZOsEY7-K6NOdOEA7LjTB3wcFPH5OVq9lxcp7cP85vi8ja1HGBIJbNG5a5UkqLKGEUhHTLAUpjcLuJWjBmqLAjulBUyW1jnpLO5ydBBzqdsTE7Xc3vfvS0xDLqpgsW6Ni12y6CFyuN1ikdwugat70Lw6HQfrzD-U1PQK4F65Uev_GjONdNRYAwdb6YvFw2WvyJrYxE42QAmRAnOm9ZW4YcTSjJQETtbY1XXfzf__qf70kU2_cv-s-MXFB2RNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69702194</pqid></control><display><type>article</type><title>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Jeraj, Robert ; Keall, Paul J ; Ostwald, Patricia M</creator><creatorcontrib>Jeraj, Robert ; Keall, Paul J ; Ostwald, Patricia M</creatorcontrib><description>Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/44/3/013</identifier><identifier>PMID: 10211804</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Applied radiobiology (equipment, dosimetry...) ; Biological and medical sciences ; Biological effects of radiation ; Electrons ; Fundamental and applied biological sciences. Psychology ; Humans ; Monte Carlo Method ; Particle Accelerators ; Photons ; Radiometry ; Radiotherapy - methods ; Scattering, Radiation ; Tissues, organs and organisms biophysics ; Water - chemistry</subject><ispartof>Physics in medicine &amp; biology, 1999-03, Vol.44 (3), p.705-717</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</citedby><cites>FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/44/3/013/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1698309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10211804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeraj, Robert</creatorcontrib><creatorcontrib>Keall, Paul J</creatorcontrib><creatorcontrib>Ostwald, Patricia M</creatorcontrib><title>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.</description><subject>Algorithms</subject><subject>Applied radiobiology (equipment, dosimetry...)</subject><subject>Biological and medical sciences</subject><subject>Biological effects of radiation</subject><subject>Electrons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Monte Carlo Method</subject><subject>Particle Accelerators</subject><subject>Photons</subject><subject>Radiometry</subject><subject>Radiotherapy - methods</subject><subject>Scattering, Radiation</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Water - chemistry</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqt_wIPsQQTBtZMmm02OstQq-AXqOaTZCazsl8kW9d-b0qKC4GkC87yTmYeQIwoXFKScADCaKpplE84nbAKUbZERZYKmIhOwTUbfwB7ZD-EVgFI55btkj8I0PoGPyE3RNb3xVejakCxweEdsk7vi_vE8mc2feGLaMsGPHn3VYDskrvOJrau2sqZOsEY7-K6NOdOEA7LjTB3wcFPH5OVq9lxcp7cP85vi8ja1HGBIJbNG5a5UkqLKGEUhHTLAUpjcLuJWjBmqLAjulBUyW1jnpLO5ydBBzqdsTE7Xc3vfvS0xDLqpgsW6Ni12y6CFyuN1ikdwugat70Lw6HQfrzD-U1PQK4F65Uev_GjONdNRYAwdb6YvFw2WvyJrYxE42QAmRAnOm9ZW4YcTSjJQETtbY1XXfzf__qf70kU2_cv-s-MXFB2RNg</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Jeraj, Robert</creator><creator>Keall, Paul J</creator><creator>Ostwald, Patricia M</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990301</creationdate><title>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</title><author>Jeraj, Robert ; Keall, Paul J ; Ostwald, Patricia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied radiobiology (equipment, dosimetry...)</topic><topic>Biological and medical sciences</topic><topic>Biological effects of radiation</topic><topic>Electrons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Monte Carlo Method</topic><topic>Particle Accelerators</topic><topic>Photons</topic><topic>Radiometry</topic><topic>Radiotherapy - methods</topic><topic>Scattering, Radiation</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeraj, Robert</creatorcontrib><creatorcontrib>Keall, Paul J</creatorcontrib><creatorcontrib>Ostwald, Patricia M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeraj, Robert</au><au>Keall, Paul J</au><au>Ostwald, Patricia M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>44</volume><issue>3</issue><spage>705</spage><epage>717</epage><pages>705-717</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>10211804</pmid><doi>10.1088/0031-9155/44/3/013</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 1999-03, Vol.44 (3), p.705-717
issn 0031-9155
1361-6560
language eng
recordid cdi_pascalfrancis_primary_1698309
source MEDLINE; Institute of Physics Journals
subjects Algorithms
Applied radiobiology (equipment, dosimetry...)
Biological and medical sciences
Biological effects of radiation
Electrons
Fundamental and applied biological sciences. Psychology
Humans
Monte Carlo Method
Particle Accelerators
Photons
Radiometry
Radiotherapy - methods
Scattering, Radiation
Tissues, organs and organisms biophysics
Water - chemistry
title Comparisons between MCNP, EGS4 and experiment for clinical electron beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20between%20MCNP,%20EGS4%20and%20experiment%20for%20clinical%20electron%20beams&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Jeraj,%20Robert&rft.date=1999-03-01&rft.volume=44&rft.issue=3&rft.spage=705&rft.epage=717&rft.pages=705-717&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/44/3/013&rft_dat=%3Cproquest_pasca%3E69702194%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69702194&rft_id=info:pmid/10211804&rfr_iscdi=true