Comparisons between MCNP, EGS4 and experiment for clinical electron beams
Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and exp...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 1999-03, Vol.44 (3), p.705-717 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 3 |
container_start_page | 705 |
container_title | Physics in medicine & biology |
container_volume | 44 |
creator | Jeraj, Robert Keall, Paul J Ostwald, Patricia M |
description | Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation. |
doi_str_mv | 10.1088/0031-9155/44/3/013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1698309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69702194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqt_wIPsQQTBtZMmm02OstQq-AXqOaTZCazsl8kW9d-b0qKC4GkC87yTmYeQIwoXFKScADCaKpplE84nbAKUbZERZYKmIhOwTUbfwB7ZD-EVgFI55btkj8I0PoGPyE3RNb3xVejakCxweEdsk7vi_vE8mc2feGLaMsGPHn3VYDskrvOJrau2sqZOsEY7-K6NOdOEA7LjTB3wcFPH5OVq9lxcp7cP85vi8ja1HGBIJbNG5a5UkqLKGEUhHTLAUpjcLuJWjBmqLAjulBUyW1jnpLO5ydBBzqdsTE7Xc3vfvS0xDLqpgsW6Ni12y6CFyuN1ikdwugat70Lw6HQfrzD-U1PQK4F65Uev_GjONdNRYAwdb6YvFw2WvyJrYxE42QAmRAnOm9ZW4YcTSjJQETtbY1XXfzf__qf70kU2_cv-s-MXFB2RNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69702194</pqid></control><display><type>article</type><title>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Jeraj, Robert ; Keall, Paul J ; Ostwald, Patricia M</creator><creatorcontrib>Jeraj, Robert ; Keall, Paul J ; Ostwald, Patricia M</creatorcontrib><description>Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/44/3/013</identifier><identifier>PMID: 10211804</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Applied radiobiology (equipment, dosimetry...) ; Biological and medical sciences ; Biological effects of radiation ; Electrons ; Fundamental and applied biological sciences. Psychology ; Humans ; Monte Carlo Method ; Particle Accelerators ; Photons ; Radiometry ; Radiotherapy - methods ; Scattering, Radiation ; Tissues, organs and organisms biophysics ; Water - chemistry</subject><ispartof>Physics in medicine & biology, 1999-03, Vol.44 (3), p.705-717</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</citedby><cites>FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/44/3/013/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1698309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10211804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeraj, Robert</creatorcontrib><creatorcontrib>Keall, Paul J</creatorcontrib><creatorcontrib>Ostwald, Patricia M</creatorcontrib><title>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.</description><subject>Algorithms</subject><subject>Applied radiobiology (equipment, dosimetry...)</subject><subject>Biological and medical sciences</subject><subject>Biological effects of radiation</subject><subject>Electrons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Monte Carlo Method</subject><subject>Particle Accelerators</subject><subject>Photons</subject><subject>Radiometry</subject><subject>Radiotherapy - methods</subject><subject>Scattering, Radiation</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Water - chemistry</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqt_wIPsQQTBtZMmm02OstQq-AXqOaTZCazsl8kW9d-b0qKC4GkC87yTmYeQIwoXFKScADCaKpplE84nbAKUbZERZYKmIhOwTUbfwB7ZD-EVgFI55btkj8I0PoGPyE3RNb3xVejakCxweEdsk7vi_vE8mc2feGLaMsGPHn3VYDskrvOJrau2sqZOsEY7-K6NOdOEA7LjTB3wcFPH5OVq9lxcp7cP85vi8ja1HGBIJbNG5a5UkqLKGEUhHTLAUpjcLuJWjBmqLAjulBUyW1jnpLO5ydBBzqdsTE7Xc3vfvS0xDLqpgsW6Ni12y6CFyuN1ikdwugat70Lw6HQfrzD-U1PQK4F65Uev_GjONdNRYAwdb6YvFw2WvyJrYxE42QAmRAnOm9ZW4YcTSjJQETtbY1XXfzf__qf70kU2_cv-s-MXFB2RNg</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Jeraj, Robert</creator><creator>Keall, Paul J</creator><creator>Ostwald, Patricia M</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990301</creationdate><title>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</title><author>Jeraj, Robert ; Keall, Paul J ; Ostwald, Patricia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-83ca97fd981e9531e68fe30ed6a7cb11833a19c064f9c685bcff8fc7a5ef07423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied radiobiology (equipment, dosimetry...)</topic><topic>Biological and medical sciences</topic><topic>Biological effects of radiation</topic><topic>Electrons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Monte Carlo Method</topic><topic>Particle Accelerators</topic><topic>Photons</topic><topic>Radiometry</topic><topic>Radiotherapy - methods</topic><topic>Scattering, Radiation</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeraj, Robert</creatorcontrib><creatorcontrib>Keall, Paul J</creatorcontrib><creatorcontrib>Ostwald, Patricia M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeraj, Robert</au><au>Keall, Paul J</au><au>Ostwald, Patricia M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons between MCNP, EGS4 and experiment for clinical electron beams</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>44</volume><issue>3</issue><spage>705</spage><epage>717</epage><pages>705-717</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>10211804</pmid><doi>10.1088/0031-9155/44/3/013</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 1999-03, Vol.44 (3), p.705-717 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_pascalfrancis_primary_1698309 |
source | MEDLINE; Institute of Physics Journals |
subjects | Algorithms Applied radiobiology (equipment, dosimetry...) Biological and medical sciences Biological effects of radiation Electrons Fundamental and applied biological sciences. Psychology Humans Monte Carlo Method Particle Accelerators Photons Radiometry Radiotherapy - methods Scattering, Radiation Tissues, organs and organisms biophysics Water - chemistry |
title | Comparisons between MCNP, EGS4 and experiment for clinical electron beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20between%20MCNP,%20EGS4%20and%20experiment%20for%20clinical%20electron%20beams&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Jeraj,%20Robert&rft.date=1999-03-01&rft.volume=44&rft.issue=3&rft.spage=705&rft.epage=717&rft.pages=705-717&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/44/3/013&rft_dat=%3Cproquest_pasca%3E69702194%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69702194&rft_id=info:pmid/10211804&rfr_iscdi=true |