Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction

A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1999-02, Vol.45 (2), p.367-382
Hauptverfasser: Mahuli, Suhas K., Agnihotr, Rajeev, Jadhav, Raja, Chauk, Shriniwas, Fan, L.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 2
container_start_page 367
container_title AIChE journal
container_volume 45
creator Mahuli, Suhas K.
Agnihotr, Rajeev
Jadhav, Raja
Chauk, Shriniwas
Fan, L.-S.
description A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.
doi_str_mv 10.1002/aic.690450216
format Article
fullrecord <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1697100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_HTN3FLTG_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2686-8731c5e5086e22fb02342cdba76d7b50e2df1552e4acda59e01b58e02b91f29f3</originalsourceid><addsrcrecordid>eNpFkM1PAjEQxRujiYgevffg0cVpu213j2QjoCFwEMOx6fbDVJddssUo_71FDJ4mb957k8kPoVsCIwJAH3QwI1FCzoEScYYGhOcy4yXwczQAAJKlBblEVzG-J0VlQQfoueo2dWidxUY3JrR6F7r2HsfQ7lwf2jesW4vjZ-N_DbzprGuw73pc6apj2cuS4t5pczCv0YXXTXQ3f3OIXiePq2qWzZfTp2o8zwIVhcgKyYjhjkMhHKW-BspyamytpbCy5uCo9YRz6nJtrOalA1LzwgGtS-Jp6dkQ3R3vbnVMT_tetyZEte3DRvd7RUQpE44Uk8fYV2jc_t8GdYClEix1gqXGT9VJpGZ2bIa4c9-npu4_lJBMcrVeTNVstWCT-Wqq1uwH4YRt8w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</title><source>Access via Wiley Online Library</source><creator>Mahuli, Suhas K. ; Agnihotr, Rajeev ; Jadhav, Raja ; Chauk, Shriniwas ; Fan, L.-S.</creator><creatorcontrib>Mahuli, Suhas K. ; Agnihotr, Rajeev ; Jadhav, Raja ; Chauk, Shriniwas ; Fan, L.-S.</creatorcontrib><description>A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690450216</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Pollution reduction ; Stack gas and industrial effluent processing</subject><ispartof>AIChE journal, 1999-02, Vol.45 (2), p.367-382</ispartof><rights>Copyright © 1999 American Institute of Chemical Engineers (AIChE)</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690450216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690450216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1697100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahuli, Suhas K.</creatorcontrib><creatorcontrib>Agnihotr, Rajeev</creatorcontrib><creatorcontrib>Jadhav, Raja</creatorcontrib><creatorcontrib>Chauk, Shriniwas</creatorcontrib><creatorcontrib>Fan, L.-S.</creatorcontrib><title>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Pollution reduction</subject><subject>Stack gas and industrial effluent processing</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkM1PAjEQxRujiYgevffg0cVpu213j2QjoCFwEMOx6fbDVJddssUo_71FDJ4mb957k8kPoVsCIwJAH3QwI1FCzoEScYYGhOcy4yXwczQAAJKlBblEVzG-J0VlQQfoueo2dWidxUY3JrR6F7r2HsfQ7lwf2jesW4vjZ-N_DbzprGuw73pc6apj2cuS4t5pczCv0YXXTXQ3f3OIXiePq2qWzZfTp2o8zwIVhcgKyYjhjkMhHKW-BspyamytpbCy5uCo9YRz6nJtrOalA1LzwgGtS-Jp6dkQ3R3vbnVMT_tetyZEte3DRvd7RUQpE44Uk8fYV2jc_t8GdYClEix1gqXGT9VJpGZ2bIa4c9-npu4_lJBMcrVeTNVstWCT-Wqq1uwH4YRt8w</recordid><startdate>199902</startdate><enddate>199902</enddate><creator>Mahuli, Suhas K.</creator><creator>Agnihotr, Rajeev</creator><creator>Jadhav, Raja</creator><creator>Chauk, Shriniwas</creator><creator>Fan, L.-S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>199902</creationdate><title>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</title><author>Mahuli, Suhas K. ; Agnihotr, Rajeev ; Jadhav, Raja ; Chauk, Shriniwas ; Fan, L.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2686-8731c5e5086e22fb02342cdba76d7b50e2df1552e4acda59e01b58e02b91f29f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Pollution reduction</topic><topic>Stack gas and industrial effluent processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahuli, Suhas K.</creatorcontrib><creatorcontrib>Agnihotr, Rajeev</creatorcontrib><creatorcontrib>Jadhav, Raja</creatorcontrib><creatorcontrib>Chauk, Shriniwas</creatorcontrib><creatorcontrib>Fan, L.-S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahuli, Suhas K.</au><au>Agnihotr, Rajeev</au><au>Jadhav, Raja</au><au>Chauk, Shriniwas</au><au>Fan, L.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1999-02</date><risdate>1999</risdate><volume>45</volume><issue>2</issue><spage>367</spage><epage>382</epage><pages>367-382</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690450216</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1999-02, Vol.45 (2), p.367-382
issn 0001-1541
1547-5905
language eng
recordid cdi_pascalfrancis_primary_1697100
source Access via Wiley Online Library
subjects Air pollution caused by fuel industries
Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Pollution reduction
Stack gas and industrial effluent processing
title Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20calcination,%20sintering%20and%20sulfation%20model%20for%20CaCo3-SO2%20reaction&rft.jtitle=AIChE%20journal&rft.au=Mahuli,%20Suhas%20K.&rft.date=1999-02&rft.volume=45&rft.issue=2&rft.spage=367&rft.epage=382&rft.pages=367-382&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690450216&rft_dat=%3Cistex_pasca%3Eark_67375_WNG_HTN3FLTG_W%3C/istex_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true