Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction
A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sul...
Gespeichert in:
Veröffentlicht in: | AIChE journal 1999-02, Vol.45 (2), p.367-382 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 382 |
---|---|
container_issue | 2 |
container_start_page | 367 |
container_title | AIChE journal |
container_volume | 45 |
creator | Mahuli, Suhas K. Agnihotr, Rajeev Jadhav, Raja Chauk, Shriniwas Fan, L.-S. |
description | A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity. |
doi_str_mv | 10.1002/aic.690450216 |
format | Article |
fullrecord | <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1697100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_HTN3FLTG_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2686-8731c5e5086e22fb02342cdba76d7b50e2df1552e4acda59e01b58e02b91f29f3</originalsourceid><addsrcrecordid>eNpFkM1PAjEQxRujiYgevffg0cVpu213j2QjoCFwEMOx6fbDVJddssUo_71FDJ4mb957k8kPoVsCIwJAH3QwI1FCzoEScYYGhOcy4yXwczQAAJKlBblEVzG-J0VlQQfoueo2dWidxUY3JrR6F7r2HsfQ7lwf2jesW4vjZ-N_DbzprGuw73pc6apj2cuS4t5pczCv0YXXTXQ3f3OIXiePq2qWzZfTp2o8zwIVhcgKyYjhjkMhHKW-BspyamytpbCy5uCo9YRz6nJtrOalA1LzwgGtS-Jp6dkQ3R3vbnVMT_tetyZEte3DRvd7RUQpE44Uk8fYV2jc_t8GdYClEix1gqXGT9VJpGZ2bIa4c9-npu4_lJBMcrVeTNVstWCT-Wqq1uwH4YRt8w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</title><source>Access via Wiley Online Library</source><creator>Mahuli, Suhas K. ; Agnihotr, Rajeev ; Jadhav, Raja ; Chauk, Shriniwas ; Fan, L.-S.</creator><creatorcontrib>Mahuli, Suhas K. ; Agnihotr, Rajeev ; Jadhav, Raja ; Chauk, Shriniwas ; Fan, L.-S.</creatorcontrib><description>A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690450216</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Pollution reduction ; Stack gas and industrial effluent processing</subject><ispartof>AIChE journal, 1999-02, Vol.45 (2), p.367-382</ispartof><rights>Copyright © 1999 American Institute of Chemical Engineers (AIChE)</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690450216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690450216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1697100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahuli, Suhas K.</creatorcontrib><creatorcontrib>Agnihotr, Rajeev</creatorcontrib><creatorcontrib>Jadhav, Raja</creatorcontrib><creatorcontrib>Chauk, Shriniwas</creatorcontrib><creatorcontrib>Fan, L.-S.</creatorcontrib><title>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Pollution reduction</subject><subject>Stack gas and industrial effluent processing</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkM1PAjEQxRujiYgevffg0cVpu213j2QjoCFwEMOx6fbDVJddssUo_71FDJ4mb957k8kPoVsCIwJAH3QwI1FCzoEScYYGhOcy4yXwczQAAJKlBblEVzG-J0VlQQfoueo2dWidxUY3JrR6F7r2HsfQ7lwf2jesW4vjZ-N_DbzprGuw73pc6apj2cuS4t5pczCv0YXXTXQ3f3OIXiePq2qWzZfTp2o8zwIVhcgKyYjhjkMhHKW-BspyamytpbCy5uCo9YRz6nJtrOalA1LzwgGtS-Jp6dkQ3R3vbnVMT_tetyZEte3DRvd7RUQpE44Uk8fYV2jc_t8GdYClEix1gqXGT9VJpGZ2bIa4c9-npu4_lJBMcrVeTNVstWCT-Wqq1uwH4YRt8w</recordid><startdate>199902</startdate><enddate>199902</enddate><creator>Mahuli, Suhas K.</creator><creator>Agnihotr, Rajeev</creator><creator>Jadhav, Raja</creator><creator>Chauk, Shriniwas</creator><creator>Fan, L.-S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>199902</creationdate><title>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</title><author>Mahuli, Suhas K. ; Agnihotr, Rajeev ; Jadhav, Raja ; Chauk, Shriniwas ; Fan, L.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2686-8731c5e5086e22fb02342cdba76d7b50e2df1552e4acda59e01b58e02b91f29f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Pollution reduction</topic><topic>Stack gas and industrial effluent processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahuli, Suhas K.</creatorcontrib><creatorcontrib>Agnihotr, Rajeev</creatorcontrib><creatorcontrib>Jadhav, Raja</creatorcontrib><creatorcontrib>Chauk, Shriniwas</creatorcontrib><creatorcontrib>Fan, L.-S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahuli, Suhas K.</au><au>Agnihotr, Rajeev</au><au>Jadhav, Raja</au><au>Chauk, Shriniwas</au><au>Fan, L.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1999-02</date><risdate>1999</risdate><volume>45</volume><issue>2</issue><spage>367</spage><epage>382</epage><pages>367-382</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>A mathematical model developed accounts for the multiple rate processes involved in the reaction of solid CaCO3 or Ca(OH)2 with SO2 at high temperatures in the combustion environment. The model, based on the grain‐subgrain concept, considers the concomitantly occurring calcination, sintering and sulfation reactions and their interactive effects on pore structure and reaction kinetics. It incorporates internal diffusion, reaction, and product layer diffusion in simulating the calcination of the CaCO3 grain and subsequent sintering and sulfation occurring on the CaO subgrains. It is the first sulfation model to incorporate the true mechanism of diffusion through the solid product phase: the solid‐state ionic diffusion of Ca2+ and O2− ions in a coupled manner through the nonporous CaSO4 (Hsia et al., 1993, 1995). Its predictions are compared with the random pore model (Bhatia and Perlmutter, 1981a) and the grain model (Szekely and Evans, 1971) using experimental CaO sulfation data from the literature as well as short‐contact‐time CaCO3 and Ca(OH)2 sulfation data reported previously. Mahuli et al. (1997) discussed a high reactivity modified calcium carbonate synthesized by optimizing the pore structural properties. This modified CaCO3 can convert 70–75% of sulfation within 0.5 s, which is substantially higher than any other sorbents reported for similar particle size and reaction conditions. The model is used to predict the calcination and sulfation kinetics, as well as to simulate the surface area evolution of the modified CaCO3, which provides further insights into its exceptional reactivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690450216</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1999-02, Vol.45 (2), p.367-382 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_pascalfrancis_primary_1697100 |
source | Access via Wiley Online Library |
subjects | Air pollution caused by fuel industries Applied sciences Energy Energy. Thermal use of fuels Exact sciences and technology Pollution reduction Stack gas and industrial effluent processing |
title | Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20calcination,%20sintering%20and%20sulfation%20model%20for%20CaCo3-SO2%20reaction&rft.jtitle=AIChE%20journal&rft.au=Mahuli,%20Suhas%20K.&rft.date=1999-02&rft.volume=45&rft.issue=2&rft.spage=367&rft.epage=382&rft.pages=367-382&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690450216&rft_dat=%3Cistex_pasca%3Eark_67375_WNG_HTN3FLTG_W%3C/istex_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |