Exploiting Multiple Radii to Learn Significant Locations
Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | |
container_start_page | 157 |
container_title | |
container_volume | |
creator | Toyama, Norio Ota, Takashi Kato, Fumihiro Toyota, Youichi Hattori, Takashi Hagino, Tatsuya |
description | Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method. |
doi_str_mv | 10.1007/11426646_15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16923760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16923760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-39b60ecb9c6f6750d05ab06e5c0ec8b2794ab50644de05a864985d5edabe085f3</originalsourceid><addsrcrecordid>eNpNkDlPxDAUhM0lsSxb8QfSUFAEnq8Xu0RoOaQgJI7ash1nZQhOFAcJ_j1ZLQXTjDTfaIoh5IzCJQWorigVDFGgoXKPnHApgDMQjO-TBUVKS86FPiArXaktY1JpFIdkARxYqSvBj8kq53eYxalCVS2IWn8PXR-nmDbF41c3xaELxbNtYiymvqiDHVPxEjcpttHbNBV17-0U-5RPyVFruxxWf74kb7fr15v7sn66e7i5rkvPkE4l1w4heKc9tlhJaEBaBxikn1PlWKWFdRJQiCbMSKHQSjYyNNYFULLlS3K-2x1s9rZrR5t8zGYY46cdfwxFzXiFMPcudr08o7QJo3F9_5ENBbO9zvy7jv8CMC1aeA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploiting Multiple Radii to Learn Significant Locations</title><source>Springer Books</source><creator>Toyama, Norio ; Ota, Takashi ; Kato, Fumihiro ; Toyota, Youichi ; Hattori, Takashi ; Hagino, Tatsuya</creator><contributor>Strang, Thomas ; Linnhoff-Popien, Claudia</contributor><creatorcontrib>Toyama, Norio ; Ota, Takashi ; Kato, Fumihiro ; Toyota, Youichi ; Hattori, Takashi ; Hagino, Tatsuya ; Strang, Thomas ; Linnhoff-Popien, Claudia</creatorcontrib><description>Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540258964</identifier><identifier>ISBN: 3540258965</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320423</identifier><identifier>EISBN: 9783540320425</identifier><identifier>DOI: 10.1007/11426646_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Cellular Phone ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Location Candidate ; Software ; Spatial Behavior ; Threshold Density ; Ubiquitous Environment</subject><ispartof>Lecture notes in computer science, 2005, p.157-168</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-39b60ecb9c6f6750d05ab06e5c0ec8b2794ab50644de05a864985d5edabe085f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11426646_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11426646_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16923760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Strang, Thomas</contributor><contributor>Linnhoff-Popien, Claudia</contributor><creatorcontrib>Toyama, Norio</creatorcontrib><creatorcontrib>Ota, Takashi</creatorcontrib><creatorcontrib>Kato, Fumihiro</creatorcontrib><creatorcontrib>Toyota, Youichi</creatorcontrib><creatorcontrib>Hattori, Takashi</creatorcontrib><creatorcontrib>Hagino, Tatsuya</creatorcontrib><title>Exploiting Multiple Radii to Learn Significant Locations</title><title>Lecture notes in computer science</title><description>Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.</description><subject>Applied sciences</subject><subject>Cellular Phone</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Location Candidate</subject><subject>Software</subject><subject>Spatial Behavior</subject><subject>Threshold Density</subject><subject>Ubiquitous Environment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540258964</isbn><isbn>3540258965</isbn><isbn>3540320423</isbn><isbn>9783540320425</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDlPxDAUhM0lsSxb8QfSUFAEnq8Xu0RoOaQgJI7ash1nZQhOFAcJ_j1ZLQXTjDTfaIoh5IzCJQWorigVDFGgoXKPnHApgDMQjO-TBUVKS86FPiArXaktY1JpFIdkARxYqSvBj8kq53eYxalCVS2IWn8PXR-nmDbF41c3xaELxbNtYiymvqiDHVPxEjcpttHbNBV17-0U-5RPyVFruxxWf74kb7fr15v7sn66e7i5rkvPkE4l1w4heKc9tlhJaEBaBxikn1PlWKWFdRJQiCbMSKHQSjYyNNYFULLlS3K-2x1s9rZrR5t8zGYY46cdfwxFzXiFMPcudr08o7QJo3F9_5ENBbO9zvy7jv8CMC1aeA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Toyama, Norio</creator><creator>Ota, Takashi</creator><creator>Kato, Fumihiro</creator><creator>Toyota, Youichi</creator><creator>Hattori, Takashi</creator><creator>Hagino, Tatsuya</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Exploiting Multiple Radii to Learn Significant Locations</title><author>Toyama, Norio ; Ota, Takashi ; Kato, Fumihiro ; Toyota, Youichi ; Hattori, Takashi ; Hagino, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-39b60ecb9c6f6750d05ab06e5c0ec8b2794ab50644de05a864985d5edabe085f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cellular Phone</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Location Candidate</topic><topic>Software</topic><topic>Spatial Behavior</topic><topic>Threshold Density</topic><topic>Ubiquitous Environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toyama, Norio</creatorcontrib><creatorcontrib>Ota, Takashi</creatorcontrib><creatorcontrib>Kato, Fumihiro</creatorcontrib><creatorcontrib>Toyota, Youichi</creatorcontrib><creatorcontrib>Hattori, Takashi</creatorcontrib><creatorcontrib>Hagino, Tatsuya</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toyama, Norio</au><au>Ota, Takashi</au><au>Kato, Fumihiro</au><au>Toyota, Youichi</au><au>Hattori, Takashi</au><au>Hagino, Tatsuya</au><au>Strang, Thomas</au><au>Linnhoff-Popien, Claudia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploiting Multiple Radii to Learn Significant Locations</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>157</spage><epage>168</epage><pages>157-168</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540258964</isbn><isbn>3540258965</isbn><eisbn>3540320423</eisbn><eisbn>9783540320425</eisbn><abstract>Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11426646_15</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.157-168 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16923760 |
source | Springer Books |
subjects | Applied sciences Cellular Phone Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Location Candidate Software Spatial Behavior Threshold Density Ubiquitous Environment |
title | Exploiting Multiple Radii to Learn Significant Locations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploiting%20Multiple%20Radii%20to%20Learn%20Significant%20Locations&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Toyama,%20Norio&rft.date=2005&rft.spage=157&rft.epage=168&rft.pages=157-168&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540258964&rft.isbn_list=3540258965&rft_id=info:doi/10.1007/11426646_15&rft_dat=%3Cpascalfrancis_sprin%3E16923760%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320423&rft.eisbn_list=9783540320425&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |