Exploiting Multiple Radii to Learn Significant Locations

Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Toyama, Norio, Ota, Takashi, Kato, Fumihiro, Toyota, Youichi, Hattori, Takashi, Hagino, Tatsuya
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 157
container_title
container_volume
creator Toyama, Norio
Ota, Takashi
Kato, Fumihiro
Toyota, Youichi
Hattori, Takashi
Hagino, Tatsuya
description Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.
doi_str_mv 10.1007/11426646_15
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16923760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16923760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-39b60ecb9c6f6750d05ab06e5c0ec8b2794ab50644de05a864985d5edabe085f3</originalsourceid><addsrcrecordid>eNpNkDlPxDAUhM0lsSxb8QfSUFAEnq8Xu0RoOaQgJI7ash1nZQhOFAcJ_j1ZLQXTjDTfaIoh5IzCJQWorigVDFGgoXKPnHApgDMQjO-TBUVKS86FPiArXaktY1JpFIdkARxYqSvBj8kq53eYxalCVS2IWn8PXR-nmDbF41c3xaELxbNtYiymvqiDHVPxEjcpttHbNBV17-0U-5RPyVFruxxWf74kb7fr15v7sn66e7i5rkvPkE4l1w4heKc9tlhJaEBaBxikn1PlWKWFdRJQiCbMSKHQSjYyNNYFULLlS3K-2x1s9rZrR5t8zGYY46cdfwxFzXiFMPcudr08o7QJo3F9_5ENBbO9zvy7jv8CMC1aeA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploiting Multiple Radii to Learn Significant Locations</title><source>Springer Books</source><creator>Toyama, Norio ; Ota, Takashi ; Kato, Fumihiro ; Toyota, Youichi ; Hattori, Takashi ; Hagino, Tatsuya</creator><contributor>Strang, Thomas ; Linnhoff-Popien, Claudia</contributor><creatorcontrib>Toyama, Norio ; Ota, Takashi ; Kato, Fumihiro ; Toyota, Youichi ; Hattori, Takashi ; Hagino, Tatsuya ; Strang, Thomas ; Linnhoff-Popien, Claudia</creatorcontrib><description>Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540258964</identifier><identifier>ISBN: 3540258965</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320423</identifier><identifier>EISBN: 9783540320425</identifier><identifier>DOI: 10.1007/11426646_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Cellular Phone ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Location Candidate ; Software ; Spatial Behavior ; Threshold Density ; Ubiquitous Environment</subject><ispartof>Lecture notes in computer science, 2005, p.157-168</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-39b60ecb9c6f6750d05ab06e5c0ec8b2794ab50644de05a864985d5edabe085f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11426646_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11426646_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16923760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Strang, Thomas</contributor><contributor>Linnhoff-Popien, Claudia</contributor><creatorcontrib>Toyama, Norio</creatorcontrib><creatorcontrib>Ota, Takashi</creatorcontrib><creatorcontrib>Kato, Fumihiro</creatorcontrib><creatorcontrib>Toyota, Youichi</creatorcontrib><creatorcontrib>Hattori, Takashi</creatorcontrib><creatorcontrib>Hagino, Tatsuya</creatorcontrib><title>Exploiting Multiple Radii to Learn Significant Locations</title><title>Lecture notes in computer science</title><description>Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.</description><subject>Applied sciences</subject><subject>Cellular Phone</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Location Candidate</subject><subject>Software</subject><subject>Spatial Behavior</subject><subject>Threshold Density</subject><subject>Ubiquitous Environment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540258964</isbn><isbn>3540258965</isbn><isbn>3540320423</isbn><isbn>9783540320425</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDlPxDAUhM0lsSxb8QfSUFAEnq8Xu0RoOaQgJI7ash1nZQhOFAcJ_j1ZLQXTjDTfaIoh5IzCJQWorigVDFGgoXKPnHApgDMQjO-TBUVKS86FPiArXaktY1JpFIdkARxYqSvBj8kq53eYxalCVS2IWn8PXR-nmDbF41c3xaELxbNtYiymvqiDHVPxEjcpttHbNBV17-0U-5RPyVFruxxWf74kb7fr15v7sn66e7i5rkvPkE4l1w4heKc9tlhJaEBaBxikn1PlWKWFdRJQiCbMSKHQSjYyNNYFULLlS3K-2x1s9rZrR5t8zGYY46cdfwxFzXiFMPcudr08o7QJo3F9_5ENBbO9zvy7jv8CMC1aeA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Toyama, Norio</creator><creator>Ota, Takashi</creator><creator>Kato, Fumihiro</creator><creator>Toyota, Youichi</creator><creator>Hattori, Takashi</creator><creator>Hagino, Tatsuya</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Exploiting Multiple Radii to Learn Significant Locations</title><author>Toyama, Norio ; Ota, Takashi ; Kato, Fumihiro ; Toyota, Youichi ; Hattori, Takashi ; Hagino, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-39b60ecb9c6f6750d05ab06e5c0ec8b2794ab50644de05a864985d5edabe085f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cellular Phone</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Location Candidate</topic><topic>Software</topic><topic>Spatial Behavior</topic><topic>Threshold Density</topic><topic>Ubiquitous Environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toyama, Norio</creatorcontrib><creatorcontrib>Ota, Takashi</creatorcontrib><creatorcontrib>Kato, Fumihiro</creatorcontrib><creatorcontrib>Toyota, Youichi</creatorcontrib><creatorcontrib>Hattori, Takashi</creatorcontrib><creatorcontrib>Hagino, Tatsuya</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toyama, Norio</au><au>Ota, Takashi</au><au>Kato, Fumihiro</au><au>Toyota, Youichi</au><au>Hattori, Takashi</au><au>Hagino, Tatsuya</au><au>Strang, Thomas</au><au>Linnhoff-Popien, Claudia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploiting Multiple Radii to Learn Significant Locations</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>157</spage><epage>168</epage><pages>157-168</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540258964</isbn><isbn>3540258965</isbn><eisbn>3540320423</eisbn><eisbn>9783540320425</eisbn><abstract>Location contexts are important for many context-aware applications. A significant location is a specialized form of location context for expressing a user’s daily activity. We propose a method to cluster positions measured by cellular phones into significant locations with multiple radii. Cellular phones we used are equipped with a positioning system, where data can be taken in low frequency with wide-varying estimated errors. In order to learn significant locations, our system exploits multiple radii for coping with these characteristics and for adapting to a variety of users’ spatial behavioral patterns. We also discuss appropriate parameters for our clustering method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11426646_15</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.157-168
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16923760
source Springer Books
subjects Applied sciences
Cellular Phone
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Location Candidate
Software
Spatial Behavior
Threshold Density
Ubiquitous Environment
title Exploiting Multiple Radii to Learn Significant Locations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploiting%20Multiple%20Radii%20to%20Learn%20Significant%20Locations&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Toyama,%20Norio&rft.date=2005&rft.spage=157&rft.epage=168&rft.pages=157-168&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540258964&rft.isbn_list=3540258965&rft_id=info:doi/10.1007/11426646_15&rft_dat=%3Cpascalfrancis_sprin%3E16923760%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320423&rft.eisbn_list=9783540320425&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true