On Deriving the Second-Stage Training Set for Trainable Combiners

Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although sev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Paclík, Pavel, Landgrebe, Thomas C. W., Tax, David M. J., Duin, Robert P. W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue
container_start_page 136
container_title
container_volume
creator Paclík, Pavel
Landgrebe, Thomas C. W.
Tax, David M. J.
Duin, Robert P. W.
description Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation. In this paper we investigate three principal training techniques, namely the re-use of the training dataset for both stages, an independent validation set, and the stacked generalization. On experiments with several datasets we have observed that the stacked generalization outperforms the other techniques in most situations, with the exception of very small sample sizes, in which the re-using strategy behaves better. We illustrate that the stacked generalization introduces additional noise to the second-stage training dataset, and should therefore be bundled with simple combiners that are insensitive to the noise. We propose an extension of the stacked generalization approach which significantly improves the combiner robustness.
doi_str_mv 10.1007/11494683_14
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16923151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16923151</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-7ff289f654f9808cd848dd3e7c25bc3a5e0d4401ddb85932ce01b3ba261f412b3</originalsourceid><addsrcrecordid>eNpNkLlOAzEURc0mkYRU_MA0FBQD79keLyUKqxQpRUJteQ0DyUxkj5D4exKFgupK91zd4hByjXCHAPIekWsuFDPIT8iYNRwYNlLBKRmhQKwZ4_qMTLVUB0YFAyHPyQgY0FpLzi7JuJRPAKBS0xF5WHTVY8ztd9utq-EjVsvo-y7Uy8GuY7XKtu0OZBmHKvX5WFi3idWs37q2i7lckYtkNyVO_3JC3p-fVrPXer54eZs9zOsdRT3UMiWqdBINT1qB8kFxFQKL0tPGeWabCIFzwBCcajSjPgI65iwVmDhSxybk5vi7s8XbTcq2820xu9xubf4xKDTdm8D97va4K3vUrWM2ru-_ikEwB4Hmn0D2C4EMXE4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Deriving the Second-Stage Training Set for Trainable Combiners</title><source>Springer Books</source><creator>Paclík, Pavel ; Landgrebe, Thomas C. W. ; Tax, David M. J. ; Duin, Robert P. W.</creator><contributor>Oza, Nikunj C. ; Roli, Fabio ; Polikar, Robi ; Kittler, Josef</contributor><creatorcontrib>Paclík, Pavel ; Landgrebe, Thomas C. W. ; Tax, David M. J. ; Duin, Robert P. W. ; Oza, Nikunj C. ; Roli, Fabio ; Polikar, Robi ; Kittler, Josef</creatorcontrib><description>Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation. In this paper we investigate three principal training techniques, namely the re-use of the training dataset for both stages, an independent validation set, and the stacked generalization. On experiments with several datasets we have observed that the stacked generalization outperforms the other techniques in most situations, with the exception of very small sample sizes, in which the re-using strategy behaves better. We illustrate that the stacked generalization introduces additional noise to the second-stage training dataset, and should therefore be bundled with simple combiners that are insensitive to the noise. We propose an extension of the stacked generalization approach which significantly improves the combiner robustness.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540263067</identifier><identifier>ISBN: 3540263063</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540315780</identifier><identifier>EISBN: 9783540315780</identifier><identifier>DOI: 10.1007/11494683_14</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Feature Representation ; Fisher Linear Discriminant ; Handwritten Digit ; Memory organisation. Data processing ; Neighbor Rule ; Software ; Spectral Dataset</subject><ispartof>Lecture notes in computer science, 2005, p.136-146</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11494683_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11494683_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16923151$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Oza, Nikunj C.</contributor><contributor>Roli, Fabio</contributor><contributor>Polikar, Robi</contributor><contributor>Kittler, Josef</contributor><creatorcontrib>Paclík, Pavel</creatorcontrib><creatorcontrib>Landgrebe, Thomas C. W.</creatorcontrib><creatorcontrib>Tax, David M. J.</creatorcontrib><creatorcontrib>Duin, Robert P. W.</creatorcontrib><title>On Deriving the Second-Stage Training Set for Trainable Combiners</title><title>Lecture notes in computer science</title><description>Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation. In this paper we investigate three principal training techniques, namely the re-use of the training dataset for both stages, an independent validation set, and the stacked generalization. On experiments with several datasets we have observed that the stacked generalization outperforms the other techniques in most situations, with the exception of very small sample sizes, in which the re-using strategy behaves better. We illustrate that the stacked generalization introduces additional noise to the second-stage training dataset, and should therefore be bundled with simple combiners that are insensitive to the noise. We propose an extension of the stacked generalization approach which significantly improves the combiner robustness.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Feature Representation</subject><subject>Fisher Linear Discriminant</subject><subject>Handwritten Digit</subject><subject>Memory organisation. Data processing</subject><subject>Neighbor Rule</subject><subject>Software</subject><subject>Spectral Dataset</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540263067</isbn><isbn>3540263063</isbn><isbn>3540315780</isbn><isbn>9783540315780</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkLlOAzEURc0mkYRU_MA0FBQD79keLyUKqxQpRUJteQ0DyUxkj5D4exKFgupK91zd4hByjXCHAPIekWsuFDPIT8iYNRwYNlLBKRmhQKwZ4_qMTLVUB0YFAyHPyQgY0FpLzi7JuJRPAKBS0xF5WHTVY8ztd9utq-EjVsvo-y7Uy8GuY7XKtu0OZBmHKvX5WFi3idWs37q2i7lckYtkNyVO_3JC3p-fVrPXer54eZs9zOsdRT3UMiWqdBINT1qB8kFxFQKL0tPGeWabCIFzwBCcajSjPgI65iwVmDhSxybk5vi7s8XbTcq2820xu9xubf4xKDTdm8D97va4K3vUrWM2ru-_ikEwB4Hmn0D2C4EMXE4</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Paclík, Pavel</creator><creator>Landgrebe, Thomas C. W.</creator><creator>Tax, David M. J.</creator><creator>Duin, Robert P. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>On Deriving the Second-Stage Training Set for Trainable Combiners</title><author>Paclík, Pavel ; Landgrebe, Thomas C. W. ; Tax, David M. J. ; Duin, Robert P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-7ff289f654f9808cd848dd3e7c25bc3a5e0d4401ddb85932ce01b3ba261f412b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Feature Representation</topic><topic>Fisher Linear Discriminant</topic><topic>Handwritten Digit</topic><topic>Memory organisation. Data processing</topic><topic>Neighbor Rule</topic><topic>Software</topic><topic>Spectral Dataset</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paclík, Pavel</creatorcontrib><creatorcontrib>Landgrebe, Thomas C. W.</creatorcontrib><creatorcontrib>Tax, David M. J.</creatorcontrib><creatorcontrib>Duin, Robert P. W.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paclík, Pavel</au><au>Landgrebe, Thomas C. W.</au><au>Tax, David M. J.</au><au>Duin, Robert P. W.</au><au>Oza, Nikunj C.</au><au>Roli, Fabio</au><au>Polikar, Robi</au><au>Kittler, Josef</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Deriving the Second-Stage Training Set for Trainable Combiners</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>136</spage><epage>146</epage><pages>136-146</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540263067</isbn><isbn>3540263063</isbn><eisbn>3540315780</eisbn><eisbn>9783540315780</eisbn><abstract>Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation. In this paper we investigate three principal training techniques, namely the re-use of the training dataset for both stages, an independent validation set, and the stacked generalization. On experiments with several datasets we have observed that the stacked generalization outperforms the other techniques in most situations, with the exception of very small sample sizes, in which the re-using strategy behaves better. We illustrate that the stacked generalization introduces additional noise to the second-stage training dataset, and should therefore be bundled with simple combiners that are insensitive to the noise. We propose an extension of the stacked generalization approach which significantly improves the combiner robustness.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11494683_14</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.136-146
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16923151
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Feature Representation
Fisher Linear Discriminant
Handwritten Digit
Memory organisation. Data processing
Neighbor Rule
Software
Spectral Dataset
title On Deriving the Second-Stage Training Set for Trainable Combiners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Deriving%20the%20Second-Stage%20Training%20Set%20for%20Trainable%20Combiners&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Pacl%C3%ADk,%20Pavel&rft.date=2005&rft.spage=136&rft.epage=146&rft.pages=136-146&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540263067&rft.isbn_list=3540263063&rft_id=info:doi/10.1007/11494683_14&rft_dat=%3Cpascalfrancis_sprin%3E16923151%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540315780&rft.eisbn_list=9783540315780&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true