Acceleration of Shortest Path and Constrained Shortest Path Computation

We study acceleration methods for point-to-point shortest path and constrained shortest path computations in directed graphs, in particular in road and railroad networks. Our acceleration methods are allowed to use a preprocessing of the network data to create auxiliary information which is then use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Köhler, Ekkehard, Möhring, Rolf H., Schilling, Heiko
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 126
container_title
container_volume
creator Köhler, Ekkehard
Möhring, Rolf H.
Schilling, Heiko
description We study acceleration methods for point-to-point shortest path and constrained shortest path computations in directed graphs, in particular in road and railroad networks. Our acceleration methods are allowed to use a preprocessing of the network data to create auxiliary information which is then used to speed-up shortest path queries. We focus on two methods based on Dijkstra’s algorithm for shortest path computations and two methods based on a generalized version of Dijkstra for constrained shortest paths. The methods are compared with other acceleration techniques, most of them published only recently. We also look at appropriate combinations of different methods to find further improvements. For shortest path computations we investigate hierarchical multiway-separator and arc-flag approaches. The hierarchical multiway-separator approach divides the graph into regions along a multiway-separator and gathers information to improve the search for shortest paths that stretch over several regions. A new multiway-separator heuristic is presented which improves the hierarchical separator approach. The arc-flag approach divides the graph into regions and gathers information on whether an arc is on a shortest path into a given region. Both methods yield significant speed-ups of the plain Dijkstra’s algorithm. The arc flag method combined with an appropriate partition and a bi-directed search achieves an average speed-up of up to 1,400 on large networks. This combination narrows down the search space of Dijkstra’s algorithm to almost the size of the corresponding shortest path for long distance shortest path queries. For the constrained shortest path problem we show that goal-directed and bi-directed acceleration methods can be used both individually and in combination. The goal-directed search achieves the best speed-up factor of 110 for the constrained problem.
doi_str_mv 10.1007/11427186_13
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16896198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16896198</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-3a6fa9e5ea2515bd84f8b2cd8f15dbb7f80b2e1ae85705ec3ceff477e8fee23b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAYhM2XRCmd-ANZGBgCfu34a6wiKEiVQAJmy3Ze00CbRHYY-Pe0lAFxyw3P3Q1HyAXQa6BU3QBUTIGWFvgBOeOiopxRpatDMgEJUHJemSMyM0rvGBOGUXlMJpRTVhpV8VMyy_mdbsVBCWMmZDEPAdeY3Nj2XdHH4nnVpxHzWDy5cVW4rinqvstjcm2HzT9a95vhc_ypnpOT6NYZZ78-Ja93ty_1fbl8XDzU82U5MCHHkjsZnUGBjgkQvtFV1J6FRkcQjfcqauoZgkMtFBUYeMAYK6VQR0TGPZ-Sy_3u4HJw65hcF9psh9RuXPqyILWRYPQ2d7XP5S3q3jBZ3_cf2QK1uyftnyf5N0vQYXQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Acceleration of Shortest Path and Constrained Shortest Path Computation</title><source>Springer Books</source><creator>Köhler, Ekkehard ; Möhring, Rolf H. ; Schilling, Heiko</creator><contributor>Nikoletseas, Sotiris E.</contributor><creatorcontrib>Köhler, Ekkehard ; Möhring, Rolf H. ; Schilling, Heiko ; Nikoletseas, Sotiris E.</creatorcontrib><description>We study acceleration methods for point-to-point shortest path and constrained shortest path computations in directed graphs, in particular in road and railroad networks. Our acceleration methods are allowed to use a preprocessing of the network data to create auxiliary information which is then used to speed-up shortest path queries. We focus on two methods based on Dijkstra’s algorithm for shortest path computations and two methods based on a generalized version of Dijkstra for constrained shortest paths. The methods are compared with other acceleration techniques, most of them published only recently. We also look at appropriate combinations of different methods to find further improvements. For shortest path computations we investigate hierarchical multiway-separator and arc-flag approaches. The hierarchical multiway-separator approach divides the graph into regions along a multiway-separator and gathers information to improve the search for shortest paths that stretch over several regions. A new multiway-separator heuristic is presented which improves the hierarchical separator approach. The arc-flag approach divides the graph into regions and gathers information on whether an arc is on a shortest path into a given region. Both methods yield significant speed-ups of the plain Dijkstra’s algorithm. The arc flag method combined with an appropriate partition and a bi-directed search achieves an average speed-up of up to 1,400 on large networks. This combination narrows down the search space of Dijkstra’s algorithm to almost the size of the corresponding shortest path for long distance shortest path queries. For the constrained shortest path problem we show that goal-directed and bi-directed acceleration methods can be used both individually and in combination. The goal-directed search achieves the best speed-up factor of 110 for the constrained problem.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540259206</identifier><identifier>ISBN: 3540259201</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320784</identifier><identifier>EISBN: 9783540320784</identifier><identifier>DOI: 10.1007/11427186_13</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acceleration Method ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Railroad Network ; Short Path ; Short Path Problem ; Target Node ; Theoretical computing</subject><ispartof>Experimental and Efficient Algorithms, 2005, p.126-138</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427186_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427186_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16896198$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nikoletseas, Sotiris E.</contributor><creatorcontrib>Köhler, Ekkehard</creatorcontrib><creatorcontrib>Möhring, Rolf H.</creatorcontrib><creatorcontrib>Schilling, Heiko</creatorcontrib><title>Acceleration of Shortest Path and Constrained Shortest Path Computation</title><title>Experimental and Efficient Algorithms</title><description>We study acceleration methods for point-to-point shortest path and constrained shortest path computations in directed graphs, in particular in road and railroad networks. Our acceleration methods are allowed to use a preprocessing of the network data to create auxiliary information which is then used to speed-up shortest path queries. We focus on two methods based on Dijkstra’s algorithm for shortest path computations and two methods based on a generalized version of Dijkstra for constrained shortest paths. The methods are compared with other acceleration techniques, most of them published only recently. We also look at appropriate combinations of different methods to find further improvements. For shortest path computations we investigate hierarchical multiway-separator and arc-flag approaches. The hierarchical multiway-separator approach divides the graph into regions along a multiway-separator and gathers information to improve the search for shortest paths that stretch over several regions. A new multiway-separator heuristic is presented which improves the hierarchical separator approach. The arc-flag approach divides the graph into regions and gathers information on whether an arc is on a shortest path into a given region. Both methods yield significant speed-ups of the plain Dijkstra’s algorithm. The arc flag method combined with an appropriate partition and a bi-directed search achieves an average speed-up of up to 1,400 on large networks. This combination narrows down the search space of Dijkstra’s algorithm to almost the size of the corresponding shortest path for long distance shortest path queries. For the constrained shortest path problem we show that goal-directed and bi-directed acceleration methods can be used both individually and in combination. The goal-directed search achieves the best speed-up factor of 110 for the constrained problem.</description><subject>Acceleration Method</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Railroad Network</subject><subject>Short Path</subject><subject>Short Path Problem</subject><subject>Target Node</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540259206</isbn><isbn>3540259201</isbn><isbn>3540320784</isbn><isbn>9783540320784</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpdkD1PwzAYhM2XRCmd-ANZGBgCfu34a6wiKEiVQAJmy3Ze00CbRHYY-Pe0lAFxyw3P3Q1HyAXQa6BU3QBUTIGWFvgBOeOiopxRpatDMgEJUHJemSMyM0rvGBOGUXlMJpRTVhpV8VMyy_mdbsVBCWMmZDEPAdeY3Nj2XdHH4nnVpxHzWDy5cVW4rinqvstjcm2HzT9a95vhc_ypnpOT6NYZZ78-Ja93ty_1fbl8XDzU82U5MCHHkjsZnUGBjgkQvtFV1J6FRkcQjfcqauoZgkMtFBUYeMAYK6VQR0TGPZ-Sy_3u4HJw65hcF9psh9RuXPqyILWRYPQ2d7XP5S3q3jBZ3_cf2QK1uyftnyf5N0vQYXQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Köhler, Ekkehard</creator><creator>Möhring, Rolf H.</creator><creator>Schilling, Heiko</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Acceleration of Shortest Path and Constrained Shortest Path Computation</title><author>Köhler, Ekkehard ; Möhring, Rolf H. ; Schilling, Heiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-3a6fa9e5ea2515bd84f8b2cd8f15dbb7f80b2e1ae85705ec3ceff477e8fee23b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acceleration Method</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Railroad Network</topic><topic>Short Path</topic><topic>Short Path Problem</topic><topic>Target Node</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Köhler, Ekkehard</creatorcontrib><creatorcontrib>Möhring, Rolf H.</creatorcontrib><creatorcontrib>Schilling, Heiko</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, Ekkehard</au><au>Möhring, Rolf H.</au><au>Schilling, Heiko</au><au>Nikoletseas, Sotiris E.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Acceleration of Shortest Path and Constrained Shortest Path Computation</atitle><btitle>Experimental and Efficient Algorithms</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>126</spage><epage>138</epage><pages>126-138</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540259206</isbn><isbn>3540259201</isbn><eisbn>3540320784</eisbn><eisbn>9783540320784</eisbn><abstract>We study acceleration methods for point-to-point shortest path and constrained shortest path computations in directed graphs, in particular in road and railroad networks. Our acceleration methods are allowed to use a preprocessing of the network data to create auxiliary information which is then used to speed-up shortest path queries. We focus on two methods based on Dijkstra’s algorithm for shortest path computations and two methods based on a generalized version of Dijkstra for constrained shortest paths. The methods are compared with other acceleration techniques, most of them published only recently. We also look at appropriate combinations of different methods to find further improvements. For shortest path computations we investigate hierarchical multiway-separator and arc-flag approaches. The hierarchical multiway-separator approach divides the graph into regions along a multiway-separator and gathers information to improve the search for shortest paths that stretch over several regions. A new multiway-separator heuristic is presented which improves the hierarchical separator approach. The arc-flag approach divides the graph into regions and gathers information on whether an arc is on a shortest path into a given region. Both methods yield significant speed-ups of the plain Dijkstra’s algorithm. The arc flag method combined with an appropriate partition and a bi-directed search achieves an average speed-up of up to 1,400 on large networks. This combination narrows down the search space of Dijkstra’s algorithm to almost the size of the corresponding shortest path for long distance shortest path queries. For the constrained shortest path problem we show that goal-directed and bi-directed acceleration methods can be used both individually and in combination. The goal-directed search achieves the best speed-up factor of 110 for the constrained problem.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427186_13</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Experimental and Efficient Algorithms, 2005, p.126-138
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16896198
source Springer Books
subjects Acceleration Method
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Railroad Network
Short Path
Short Path Problem
Target Node
Theoretical computing
title Acceleration of Shortest Path and Constrained Shortest Path Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Acceleration%20of%20Shortest%20Path%20and%20Constrained%20Shortest%20Path%20Computation&rft.btitle=Experimental%20and%20Efficient%20Algorithms&rft.au=K%C3%B6hler,%20Ekkehard&rft.date=2005&rft.spage=126&rft.epage=138&rft.pages=126-138&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540259206&rft.isbn_list=3540259201&rft_id=info:doi/10.1007/11427186_13&rft_dat=%3Cpascalfrancis_sprin%3E16896198%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320784&rft.eisbn_list=9783540320784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true