Experimental Results for Stackelberg Scheduling Strategies

In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaporis, A. C., Kirousis, L. M., Politopoulou, E. I., Spirakis, P. G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 77
container_title
container_volume
creator Kaporis, A. C.
Kirousis, L. M.
Politopoulou, E. I.
Spirakis, P. G.
description In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game. We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.
doi_str_mv 10.1007/11427186_9
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16895945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16895945</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-fa9c07b60c38b8efcae34eec64279b99542a3b4f069dd5bebaecffcb9b4b9df43</originalsourceid><addsrcrecordid>eNpFkFtLAzEQheMNrLUv_oJ9EXxZzXWT8U1KvUBBsPockuykrq7bJdmC_nu3VHBezsD5GOYcQi4YvWaU6hvGJNfMVBYOyJlQkgpOtZGHZMIqxkohJByRGWiz87gCTqtjMqGC8hK0FKdklvMHHUcwrQAm5Hbx3WNqvrAbXFu8YN62Qy7iJhWrwYVPbD2mdbEK71hv26Yb1yG5AdcN5nNyEl2bcfanU_J2v3idP5bL54en-d2y7DkzQxkdBKp9RYMw3mAMDoVEDNWYBDyAktwJLyOtoK6VR-8wxBg8eOmhjlJMyeX-bu9ycG1MrgtNtv34tUs_llUGFEg1cld7Lo9Wt8Zk_WbzmS2jdted_e9O_AKaJl0N</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Results for Stackelberg Scheduling Strategies</title><source>Springer Books</source><creator>Kaporis, A. C. ; Kirousis, L. M. ; Politopoulou, E. I. ; Spirakis, P. G.</creator><contributor>Nikoletseas, Sotiris E.</contributor><creatorcontrib>Kaporis, A. C. ; Kirousis, L. M. ; Politopoulou, E. I. ; Spirakis, P. G. ; Nikoletseas, Sotiris E.</creatorcontrib><description>In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game. We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540259206</identifier><identifier>ISBN: 3540259201</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320784</identifier><identifier>EISBN: 9783540320784</identifier><identifier>DOI: 10.1007/11427186_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Latency Function ; Leader Strategy ; Nash Equilibrium ; Noncooperative Game ; Optimum Load ; Theoretical computing</subject><ispartof>Experimental and Efficient Algorithms, 2005, p.77-88</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427186_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427186_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16895945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nikoletseas, Sotiris E.</contributor><creatorcontrib>Kaporis, A. C.</creatorcontrib><creatorcontrib>Kirousis, L. M.</creatorcontrib><creatorcontrib>Politopoulou, E. I.</creatorcontrib><creatorcontrib>Spirakis, P. G.</creatorcontrib><title>Experimental Results for Stackelberg Scheduling Strategies</title><title>Experimental and Efficient Algorithms</title><description>In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game. We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Latency Function</subject><subject>Leader Strategy</subject><subject>Nash Equilibrium</subject><subject>Noncooperative Game</subject><subject>Optimum Load</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540259206</isbn><isbn>3540259201</isbn><isbn>3540320784</isbn><isbn>9783540320784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkFtLAzEQheMNrLUv_oJ9EXxZzXWT8U1KvUBBsPockuykrq7bJdmC_nu3VHBezsD5GOYcQi4YvWaU6hvGJNfMVBYOyJlQkgpOtZGHZMIqxkohJByRGWiz87gCTqtjMqGC8hK0FKdklvMHHUcwrQAm5Hbx3WNqvrAbXFu8YN62Qy7iJhWrwYVPbD2mdbEK71hv26Yb1yG5AdcN5nNyEl2bcfanU_J2v3idP5bL54en-d2y7DkzQxkdBKp9RYMw3mAMDoVEDNWYBDyAktwJLyOtoK6VR-8wxBg8eOmhjlJMyeX-bu9ycG1MrgtNtv34tUs_llUGFEg1cld7Lo9Wt8Zk_WbzmS2jdted_e9O_AKaJl0N</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kaporis, A. C.</creator><creator>Kirousis, L. M.</creator><creator>Politopoulou, E. I.</creator><creator>Spirakis, P. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Experimental Results for Stackelberg Scheduling Strategies</title><author>Kaporis, A. C. ; Kirousis, L. M. ; Politopoulou, E. I. ; Spirakis, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-fa9c07b60c38b8efcae34eec64279b99542a3b4f069dd5bebaecffcb9b4b9df43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Latency Function</topic><topic>Leader Strategy</topic><topic>Nash Equilibrium</topic><topic>Noncooperative Game</topic><topic>Optimum Load</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaporis, A. C.</creatorcontrib><creatorcontrib>Kirousis, L. M.</creatorcontrib><creatorcontrib>Politopoulou, E. I.</creatorcontrib><creatorcontrib>Spirakis, P. G.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaporis, A. C.</au><au>Kirousis, L. M.</au><au>Politopoulou, E. I.</au><au>Spirakis, P. G.</au><au>Nikoletseas, Sotiris E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Results for Stackelberg Scheduling Strategies</atitle><btitle>Experimental and Efficient Algorithms</btitle><date>2005</date><risdate>2005</risdate><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540259206</isbn><isbn>3540259201</isbn><eisbn>3540320784</eisbn><eisbn>9783540320784</eisbn><abstract>In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game. We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427186_9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Experimental and Efficient Algorithms, 2005, p.77-88
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16895945
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Latency Function
Leader Strategy
Nash Equilibrium
Noncooperative Game
Optimum Load
Theoretical computing
title Experimental Results for Stackelberg Scheduling Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Results%20for%20Stackelberg%20Scheduling%20Strategies&rft.btitle=Experimental%20and%20Efficient%20Algorithms&rft.au=Kaporis,%20A.%20C.&rft.date=2005&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540259206&rft.isbn_list=3540259201&rft_id=info:doi/10.1007/11427186_9&rft_dat=%3Cpascalfrancis_sprin%3E16895945%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320784&rft.eisbn_list=9783540320784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true