Experimental Results for Stackelberg Scheduling Strategies
In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | |
container_volume | |
creator | Kaporis, A. C. Kirousis, L. M. Politopoulou, E. I. Spirakis, P. G. |
description | In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game.
We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox. |
doi_str_mv | 10.1007/11427186_9 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16895945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16895945</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-fa9c07b60c38b8efcae34eec64279b99542a3b4f069dd5bebaecffcb9b4b9df43</originalsourceid><addsrcrecordid>eNpFkFtLAzEQheMNrLUv_oJ9EXxZzXWT8U1KvUBBsPockuykrq7bJdmC_nu3VHBezsD5GOYcQi4YvWaU6hvGJNfMVBYOyJlQkgpOtZGHZMIqxkohJByRGWiz87gCTqtjMqGC8hK0FKdklvMHHUcwrQAm5Hbx3WNqvrAbXFu8YN62Qy7iJhWrwYVPbD2mdbEK71hv26Yb1yG5AdcN5nNyEl2bcfanU_J2v3idP5bL54en-d2y7DkzQxkdBKp9RYMw3mAMDoVEDNWYBDyAktwJLyOtoK6VR-8wxBg8eOmhjlJMyeX-bu9ycG1MrgtNtv34tUs_llUGFEg1cld7Lo9Wt8Zk_WbzmS2jdted_e9O_AKaJl0N</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Results for Stackelberg Scheduling Strategies</title><source>Springer Books</source><creator>Kaporis, A. C. ; Kirousis, L. M. ; Politopoulou, E. I. ; Spirakis, P. G.</creator><contributor>Nikoletseas, Sotiris E.</contributor><creatorcontrib>Kaporis, A. C. ; Kirousis, L. M. ; Politopoulou, E. I. ; Spirakis, P. G. ; Nikoletseas, Sotiris E.</creatorcontrib><description>In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game.
We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540259206</identifier><identifier>ISBN: 3540259201</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320784</identifier><identifier>EISBN: 9783540320784</identifier><identifier>DOI: 10.1007/11427186_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Latency Function ; Leader Strategy ; Nash Equilibrium ; Noncooperative Game ; Optimum Load ; Theoretical computing</subject><ispartof>Experimental and Efficient Algorithms, 2005, p.77-88</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427186_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427186_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16895945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nikoletseas, Sotiris E.</contributor><creatorcontrib>Kaporis, A. C.</creatorcontrib><creatorcontrib>Kirousis, L. M.</creatorcontrib><creatorcontrib>Politopoulou, E. I.</creatorcontrib><creatorcontrib>Spirakis, P. G.</creatorcontrib><title>Experimental Results for Stackelberg Scheduling Strategies</title><title>Experimental and Efficient Algorithms</title><description>In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game.
We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Latency Function</subject><subject>Leader Strategy</subject><subject>Nash Equilibrium</subject><subject>Noncooperative Game</subject><subject>Optimum Load</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540259206</isbn><isbn>3540259201</isbn><isbn>3540320784</isbn><isbn>9783540320784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkFtLAzEQheMNrLUv_oJ9EXxZzXWT8U1KvUBBsPockuykrq7bJdmC_nu3VHBezsD5GOYcQi4YvWaU6hvGJNfMVBYOyJlQkgpOtZGHZMIqxkohJByRGWiz87gCTqtjMqGC8hK0FKdklvMHHUcwrQAm5Hbx3WNqvrAbXFu8YN62Qy7iJhWrwYVPbD2mdbEK71hv26Yb1yG5AdcN5nNyEl2bcfanU_J2v3idP5bL54en-d2y7DkzQxkdBKp9RYMw3mAMDoVEDNWYBDyAktwJLyOtoK6VR-8wxBg8eOmhjlJMyeX-bu9ycG1MrgtNtv34tUs_llUGFEg1cld7Lo9Wt8Zk_WbzmS2jdted_e9O_AKaJl0N</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kaporis, A. C.</creator><creator>Kirousis, L. M.</creator><creator>Politopoulou, E. I.</creator><creator>Spirakis, P. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Experimental Results for Stackelberg Scheduling Strategies</title><author>Kaporis, A. C. ; Kirousis, L. M. ; Politopoulou, E. I. ; Spirakis, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-fa9c07b60c38b8efcae34eec64279b99542a3b4f069dd5bebaecffcb9b4b9df43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Latency Function</topic><topic>Leader Strategy</topic><topic>Nash Equilibrium</topic><topic>Noncooperative Game</topic><topic>Optimum Load</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaporis, A. C.</creatorcontrib><creatorcontrib>Kirousis, L. M.</creatorcontrib><creatorcontrib>Politopoulou, E. I.</creatorcontrib><creatorcontrib>Spirakis, P. G.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaporis, A. C.</au><au>Kirousis, L. M.</au><au>Politopoulou, E. I.</au><au>Spirakis, P. G.</au><au>Nikoletseas, Sotiris E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Results for Stackelberg Scheduling Strategies</atitle><btitle>Experimental and Efficient Algorithms</btitle><date>2005</date><risdate>2005</risdate><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540259206</isbn><isbn>3540259201</isbn><eisbn>3540320784</eisbn><eisbn>9783540320784</eisbn><abstract>In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game.
We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoA ≥ c. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427186_9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Experimental and Efficient Algorithms, 2005, p.77-88 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16895945 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Latency Function Leader Strategy Nash Equilibrium Noncooperative Game Optimum Load Theoretical computing |
title | Experimental Results for Stackelberg Scheduling Strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Results%20for%20Stackelberg%20Scheduling%20Strategies&rft.btitle=Experimental%20and%20Efficient%20Algorithms&rft.au=Kaporis,%20A.%20C.&rft.date=2005&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540259206&rft.isbn_list=3540259201&rft_id=info:doi/10.1007/11427186_9&rft_dat=%3Cpascalfrancis_sprin%3E16895945%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320784&rft.eisbn_list=9783540320784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |