Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms

Previous works on breast tissue identification and abnormalities detection notice that the feature extraction process is affected if the region processed is not well focused. Thereby, it is important to split the mammogram into interesting regions to achieve optimal breast parenchyma measurements, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raba, David, Oliver, Arnau, Martí, Joan, Peracaula, Marta, Espunya, Joan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue
container_start_page 471
container_title
container_volume
creator Raba, David
Oliver, Arnau
Martí, Joan
Peracaula, Marta
Espunya, Joan
description Previous works on breast tissue identification and abnormalities detection notice that the feature extraction process is affected if the region processed is not well focused. Thereby, it is important to split the mammogram into interesting regions to achieve optimal breast parenchyma measurements, breast registration or to put into focus a technique when we search for abnormalities. In this paper, we review most of the relevant work that has been presented from 80’s to nowadays. Secondly, an automated technique for segmenting a digital mammogram into breast region and background, with pectoral muscle suppression is presented.
doi_str_mv 10.1007/11492542_58
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16895019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16895019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f8a702d985d126a4b7e8fa81bbb2d23dc694820421d6b1dac0d1a4c80732a1e83</originalsourceid><addsrcrecordid>eNpNkEtLxDAUheMLrOOs_APduHBRzb1J22Sp45sRhdF1uU3TWu2LpIP47-0wIsKBu_g-LofD2Anwc-A8vQCQGmOJWax22FynSsSSC0ShcJcFkABEQki998cwgVjKfRZwwTHSqRSH7Mj7D845phoD9njlLPkxXNmqtd1IY9134Vc9vocv1oy9oyZ8WnvT2HC1HgZnvd8IU67rqh43lNq2rxy1_pgdlNR4O_-9M_Z2e_O6uI-Wz3cPi8tlZKY2Y1QqSjkWWsUFYEIyT60qSUGe51igKEyipUIuEYokh4IML4CkUTwVSGCVmLHT7d-BvKGmdNSZ2meDq1ty3xkkSscc9OSdbT0_oa6yLsv7_tNnwLPNmNm_McUPQJ9hTQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms</title><source>Springer Books</source><creator>Raba, David ; Oliver, Arnau ; Martí, Joan ; Peracaula, Marta ; Espunya, Joan</creator><contributor>Pina, Pedro ; Pérez de la Blanca, Nicolás ; Marques, Jorge S.</contributor><creatorcontrib>Raba, David ; Oliver, Arnau ; Martí, Joan ; Peracaula, Marta ; Espunya, Joan ; Pina, Pedro ; Pérez de la Blanca, Nicolás ; Marques, Jorge S.</creatorcontrib><description>Previous works on breast tissue identification and abnormalities detection notice that the feature extraction process is affected if the region processed is not well focused. Thereby, it is important to split the mammogram into interesting regions to achieve optimal breast parenchyma measurements, breast registration or to put into focus a technique when we search for abnormalities. In this paper, we review most of the relevant work that has been presented from 80’s to nowadays. Secondly, an automated technique for segmenting a digital mammogram into breast region and background, with pectoral muscle suppression is presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540261544</identifier><identifier>ISBN: 3540261540</identifier><identifier>ISBN: 9783540261537</identifier><identifier>ISBN: 3540261532</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540322382</identifier><identifier>EISBN: 3540322388</identifier><identifier>DOI: 10.1007/11492542_58</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Contour ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Digital Mammography ; Exact sciences and technology ; Mammographic Density ; Mammographic Image ; Pattern recognition. Digital image processing. Computational geometry ; Pectoral Muscle</subject><ispartof>Lecture notes in computer science, 2005, p.471-478</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f8a702d985d126a4b7e8fa81bbb2d23dc694820421d6b1dac0d1a4c80732a1e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11492542_58$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11492542_58$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4040,4041,27916,38246,41433,42502</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16895019$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pina, Pedro</contributor><contributor>Pérez de la Blanca, Nicolás</contributor><contributor>Marques, Jorge S.</contributor><creatorcontrib>Raba, David</creatorcontrib><creatorcontrib>Oliver, Arnau</creatorcontrib><creatorcontrib>Martí, Joan</creatorcontrib><creatorcontrib>Peracaula, Marta</creatorcontrib><creatorcontrib>Espunya, Joan</creatorcontrib><title>Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms</title><title>Lecture notes in computer science</title><description>Previous works on breast tissue identification and abnormalities detection notice that the feature extraction process is affected if the region processed is not well focused. Thereby, it is important to split the mammogram into interesting regions to achieve optimal breast parenchyma measurements, breast registration or to put into focus a technique when we search for abnormalities. In this paper, we review most of the relevant work that has been presented from 80’s to nowadays. Secondly, an automated technique for segmenting a digital mammogram into breast region and background, with pectoral muscle suppression is presented.</description><subject>Active Contour</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Digital Mammography</subject><subject>Exact sciences and technology</subject><subject>Mammographic Density</subject><subject>Mammographic Image</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pectoral Muscle</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540261544</isbn><isbn>3540261540</isbn><isbn>9783540261537</isbn><isbn>3540261532</isbn><isbn>9783540322382</isbn><isbn>3540322388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtLxDAUheMLrOOs_APduHBRzb1J22Sp45sRhdF1uU3TWu2LpIP47-0wIsKBu_g-LofD2Anwc-A8vQCQGmOJWax22FynSsSSC0ShcJcFkABEQki998cwgVjKfRZwwTHSqRSH7Mj7D845phoD9njlLPkxXNmqtd1IY9134Vc9vocv1oy9oyZ8WnvT2HC1HgZnvd8IU67rqh43lNq2rxy1_pgdlNR4O_-9M_Z2e_O6uI-Wz3cPi8tlZKY2Y1QqSjkWWsUFYEIyT60qSUGe51igKEyipUIuEYokh4IML4CkUTwVSGCVmLHT7d-BvKGmdNSZ2meDq1ty3xkkSscc9OSdbT0_oa6yLsv7_tNnwLPNmNm_McUPQJ9hTQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Raba, David</creator><creator>Oliver, Arnau</creator><creator>Martí, Joan</creator><creator>Peracaula, Marta</creator><creator>Espunya, Joan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms</title><author>Raba, David ; Oliver, Arnau ; Martí, Joan ; Peracaula, Marta ; Espunya, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f8a702d985d126a4b7e8fa81bbb2d23dc694820421d6b1dac0d1a4c80732a1e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Active Contour</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Digital Mammography</topic><topic>Exact sciences and technology</topic><topic>Mammographic Density</topic><topic>Mammographic Image</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pectoral Muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raba, David</creatorcontrib><creatorcontrib>Oliver, Arnau</creatorcontrib><creatorcontrib>Martí, Joan</creatorcontrib><creatorcontrib>Peracaula, Marta</creatorcontrib><creatorcontrib>Espunya, Joan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raba, David</au><au>Oliver, Arnau</au><au>Martí, Joan</au><au>Peracaula, Marta</au><au>Espunya, Joan</au><au>Pina, Pedro</au><au>Pérez de la Blanca, Nicolás</au><au>Marques, Jorge S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>471</spage><epage>478</epage><pages>471-478</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540261544</isbn><isbn>3540261540</isbn><isbn>9783540261537</isbn><isbn>3540261532</isbn><eisbn>9783540322382</eisbn><eisbn>3540322388</eisbn><abstract>Previous works on breast tissue identification and abnormalities detection notice that the feature extraction process is affected if the region processed is not well focused. Thereby, it is important to split the mammogram into interesting regions to achieve optimal breast parenchyma measurements, breast registration or to put into focus a technique when we search for abnormalities. In this paper, we review most of the relevant work that has been presented from 80’s to nowadays. Secondly, an automated technique for segmenting a digital mammogram into breast region and background, with pectoral muscle suppression is presented.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11492542_58</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.471-478
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16895019
source Springer Books
subjects Active Contour
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Digital Mammography
Exact sciences and technology
Mammographic Density
Mammographic Image
Pattern recognition. Digital image processing. Computational geometry
Pectoral Muscle
title Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Breast%20Segmentation%20with%20Pectoral%20Muscle%20Suppression%20on%20Digital%20Mammograms&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Raba,%20David&rft.date=2005&rft.spage=471&rft.epage=478&rft.pages=471-478&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540261544&rft.isbn_list=3540261540&rft.isbn_list=9783540261537&rft.isbn_list=3540261532&rft_id=info:doi/10.1007/11492542_58&rft_dat=%3Cpascalfrancis_sprin%3E16895019%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540322382&rft.eisbn_list=3540322388&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true