Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database

In reality, sequence databases are updated incrementally. The changes on the database may invalidate some existing sequential patterns and introduce new ones. Instead of recomputing the database each time, the incremental mining algorithms target efficiently maintaining the sequential patterns in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Son N., Sun, Xingzhi, Orlowska, Maria E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue
container_start_page 442
container_title
container_volume
creator Nguyen, Son N.
Sun, Xingzhi
Orlowska, Maria E.
description In reality, sequence databases are updated incrementally. The changes on the database may invalidate some existing sequential patterns and introduce new ones. Instead of recomputing the database each time, the incremental mining algorithms target efficiently maintaining the sequential patterns in the dynamically changing database. Recently, a new incremental mining algorithm, called IncSpan was proposed at the International Conference on Knowledge Discovery and Data Mining (KDD’04). However, we find that in general, IncSpan fails to mine the complete set of sequential patterns from an updated database. In this paper, we clarify this weakness by proving the incorrectness of the basic properties in the IncSpan algorithm. Also, we rectify the observed shortcomings by giving our solution.
doi_str_mv 10.1007/11430919_52
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16895009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16895009</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-59a4c8f7c6b7b4f71d02438084d88b1138cc6e3d36e3dccec8dc175d1ec5745e3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1Loi1d8QPZsGARmPEjttmhlkelIpBa1pHjOFWgdYIdkPh7EsqCzczonKtZXELOEa4QQF4jcgYadS7oARkzwYGhZoIekhFmiCljXB-RqZZqcDQDmeljMgIGNNWSs1MyjvENAKjUdETWi10bmi-3c76LSVMlC29XrfE3wxF-sdkmT7Wv_WbQK_fx2bO6hy-m61zwMal9sjRh45K56UxhojsjJ5XZRjf92xPyen-3nj2my-eHxex2mbYUdZcKbbhVlbRZIQteSSyBcqZA8VKpApEpazPHSjYMa51VpUUpSnRWSC4cm5CL_d_WRGu2VTDe1jFvQ70z4TvHTGkBoPvc5T4Xe-U3LuRF07zHHCEfOs3_dcp-AGCUY_0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database</title><source>Springer Books</source><creator>Nguyen, Son N. ; Sun, Xingzhi ; Orlowska, Maria E.</creator><contributor>Cheung, David ; Ho, Tu Bao ; Liu, Huan</contributor><creatorcontrib>Nguyen, Son N. ; Sun, Xingzhi ; Orlowska, Maria E. ; Cheung, David ; Ho, Tu Bao ; Liu, Huan</creatorcontrib><description>In reality, sequence databases are updated incrementally. The changes on the database may invalidate some existing sequential patterns and introduce new ones. Instead of recomputing the database each time, the incremental mining algorithms target efficiently maintaining the sequential patterns in the dynamically changing database. Recently, a new incremental mining algorithm, called IncSpan was proposed at the International Conference on Knowledge Discovery and Data Mining (KDD’04). However, we find that in general, IncSpan fails to mine the complete set of sequential patterns from an updated database. In this paper, we clarify this weakness by proving the incorrectness of the basic properties in the IncSpan algorithm. Also, we rectify the observed shortcomings by giving our solution.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540260769</identifier><identifier>ISBN: 3540260765</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319352</identifier><identifier>EISBN: 9783540319351</identifier><identifier>DOI: 10.1007/11430919_52</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithm ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Incremental mining ; Learning and adaptive systems ; Memory organisation. Data processing ; Sequential patterns ; Software</subject><ispartof>Advances in Knowledge Discovery and Data Mining, 2005, p.442-451</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11430919_52$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11430919_52$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16895009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Cheung, David</contributor><contributor>Ho, Tu Bao</contributor><contributor>Liu, Huan</contributor><creatorcontrib>Nguyen, Son N.</creatorcontrib><creatorcontrib>Sun, Xingzhi</creatorcontrib><creatorcontrib>Orlowska, Maria E.</creatorcontrib><title>Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database</title><title>Advances in Knowledge Discovery and Data Mining</title><description>In reality, sequence databases are updated incrementally. The changes on the database may invalidate some existing sequential patterns and introduce new ones. Instead of recomputing the database each time, the incremental mining algorithms target efficiently maintaining the sequential patterns in the dynamically changing database. Recently, a new incremental mining algorithm, called IncSpan was proposed at the International Conference on Knowledge Discovery and Data Mining (KDD’04). However, we find that in general, IncSpan fails to mine the complete set of sequential patterns from an updated database. In this paper, we clarify this weakness by proving the incorrectness of the basic properties in the IncSpan algorithm. Also, we rectify the observed shortcomings by giving our solution.</description><subject>Algorithm</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Incremental mining</subject><subject>Learning and adaptive systems</subject><subject>Memory organisation. Data processing</subject><subject>Sequential patterns</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540260769</isbn><isbn>3540260765</isbn><isbn>3540319352</isbn><isbn>9783540319351</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtOwzAQRc1Loi1d8QPZsGARmPEjttmhlkelIpBa1pHjOFWgdYIdkPh7EsqCzczonKtZXELOEa4QQF4jcgYadS7oARkzwYGhZoIekhFmiCljXB-RqZZqcDQDmeljMgIGNNWSs1MyjvENAKjUdETWi10bmi-3c76LSVMlC29XrfE3wxF-sdkmT7Wv_WbQK_fx2bO6hy-m61zwMal9sjRh45K56UxhojsjJ5XZRjf92xPyen-3nj2my-eHxex2mbYUdZcKbbhVlbRZIQteSSyBcqZA8VKpApEpazPHSjYMa51VpUUpSnRWSC4cm5CL_d_WRGu2VTDe1jFvQ70z4TvHTGkBoPvc5T4Xe-U3LuRF07zHHCEfOs3_dcp-AGCUY_0</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Nguyen, Son N.</creator><creator>Sun, Xingzhi</creator><creator>Orlowska, Maria E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database</title><author>Nguyen, Son N. ; Sun, Xingzhi ; Orlowska, Maria E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-59a4c8f7c6b7b4f71d02438084d88b1138cc6e3d36e3dccec8dc175d1ec5745e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Incremental mining</topic><topic>Learning and adaptive systems</topic><topic>Memory organisation. Data processing</topic><topic>Sequential patterns</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Son N.</creatorcontrib><creatorcontrib>Sun, Xingzhi</creatorcontrib><creatorcontrib>Orlowska, Maria E.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Son N.</au><au>Sun, Xingzhi</au><au>Orlowska, Maria E.</au><au>Cheung, David</au><au>Ho, Tu Bao</au><au>Liu, Huan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database</atitle><btitle>Advances in Knowledge Discovery and Data Mining</btitle><date>2005</date><risdate>2005</risdate><spage>442</spage><epage>451</epage><pages>442-451</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540260769</isbn><isbn>3540260765</isbn><eisbn>3540319352</eisbn><eisbn>9783540319351</eisbn><abstract>In reality, sequence databases are updated incrementally. The changes on the database may invalidate some existing sequential patterns and introduce new ones. Instead of recomputing the database each time, the incremental mining algorithms target efficiently maintaining the sequential patterns in the dynamically changing database. Recently, a new incremental mining algorithm, called IncSpan was proposed at the International Conference on Knowledge Discovery and Data Mining (KDD’04). However, we find that in general, IncSpan fails to mine the complete set of sequential patterns from an updated database. In this paper, we clarify this weakness by proving the incorrectness of the basic properties in the IncSpan algorithm. Also, we rectify the observed shortcomings by giving our solution.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11430919_52</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Knowledge Discovery and Data Mining, 2005, p.442-451
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16895009
source Springer Books
subjects Algorithm
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Incremental mining
Learning and adaptive systems
Memory organisation. Data processing
Sequential patterns
Software
title Improvements of IncSpan: Incremental Mining of Sequential Patterns in Large Database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvements%20of%20IncSpan:%20Incremental%20Mining%20of%20Sequential%20Patterns%20in%20Large%20Database&rft.btitle=Advances%20in%20Knowledge%20Discovery%20and%20Data%20Mining&rft.au=Nguyen,%20Son%20N.&rft.date=2005&rft.spage=442&rft.epage=451&rft.pages=442-451&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540260769&rft.isbn_list=3540260765&rft_id=info:doi/10.1007/11430919_52&rft_dat=%3Cpascalfrancis_sprin%3E16895009%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319352&rft.eisbn_list=9783540319351&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true