Costs and Benefits of Load Sharing in the Computational Grid
We present an analysis of the costs and benefits of load sharing of parallel jobs in the computational grid. We begin with a workload generation model that captures the essential properties of parallel jobs and use it as input to a grid simulation model. Our experiments are performed for both homoge...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | |
container_start_page | 160 |
container_title | |
container_volume | |
creator | England, Darin Weissman, Jon B. |
description | We present an analysis of the costs and benefits of load sharing of parallel jobs in the computational grid. We begin with a workload generation model that captures the essential properties of parallel jobs and use it as input to a grid simulation model. Our experiments are performed for both homogeneous and heterogeneous grids. We measured average job slowdown with respect to both local and remote jobs and we show that, with some reasonable assumptions concerning the migration policy, load sharing proves to be beneficial when the grid is homogeneous, and that load sharing can adversely affect job slowdown for lightly-loaded machines in a heterogeneous grid. With respect to the number of sites in a grid, we find that the benefits obtained by load sharing do not scale well. Small to modest-size grids can employ load sharing as effectively as large-scale grids. We also present and evaluate an effective scheduling heuristic for migrating a job within the grid. |
doi_str_mv | 10.1007/11407522_9 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16894891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16894891</sourcerecordid><originalsourceid>FETCH-LOGICAL-p254t-bc05188b765ae086291a8005f4be389343a576ea3fe46d388f3336c9cc97e11e3</originalsourceid><addsrcrecordid>eNpFUE1LxDAUjF_guu7FX5CL4KX6Xl_SJOBFi65CwYN6LmmbuNHdpjT14L93lxWcyzDMMAzD2AXCNQKoG0QBSuZ5bQ7YGUkBhMpIOmQzLBAzImGO9kYuiQCO2QwI8swoQadskdInbEGopVAzdlvGNCVu-47fu975sBXR8yrajr-u7Bj6Dx56Pq0cL-Nm-J7sFGJv13w5hu6cnXi7Tm7xx3P2_vjwVj5l1cvyubyrsiGXYsqaFiRq3ahCWge6yA1aDSC9aBxpQ4KsVIWz5J0oOtLaE1HRmrY1yiE6mrPLfe9gU2vXfrR9G1I9jGFjx58aC22ENrjNXe1zadgNd2PdxPiVaoR6d139fx39Aju1WTg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Costs and Benefits of Load Sharing in the Computational Grid</title><source>Springer Books</source><creator>England, Darin ; Weissman, Jon B.</creator><contributor>Schwiegelshohn, Uwe ; Rudolph, Larry ; Feitelson, Dror G.</contributor><creatorcontrib>England, Darin ; Weissman, Jon B. ; Schwiegelshohn, Uwe ; Rudolph, Larry ; Feitelson, Dror G.</creatorcontrib><description>We present an analysis of the costs and benefits of load sharing of parallel jobs in the computational grid. We begin with a workload generation model that captures the essential properties of parallel jobs and use it as input to a grid simulation model. Our experiments are performed for both homogeneous and heterogeneous grids. We measured average job slowdown with respect to both local and remote jobs and we show that, with some reasonable assumptions concerning the migration policy, load sharing proves to be beneficial when the grid is homogeneous, and that load sharing can adversely affect job slowdown for lightly-loaded machines in a heterogeneous grid. With respect to the number of sites in a grid, we find that the benefits obtained by load sharing do not scale well. Small to modest-size grids can employ load sharing as effectively as large-scale grids. We also present and evaluate an effective scheduling heuristic for migrating a job within the grid.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540253300</identifier><identifier>ISBN: 9783540253303</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540317953</identifier><identifier>EISBN: 9783540317951</identifier><identifier>DOI: 10.1007/11407522_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Average Slowdown ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Heterogeneous Grid ; Load Sharing ; Operational research and scientific management ; Operational research. Management science ; Queue Time ; Scheduling, sequencing ; Software ; Workload Model</subject><ispartof>Job Scheduling Strategies for Parallel Processing, 2005, p.160-175</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11407522_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11407522_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16894891$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schwiegelshohn, Uwe</contributor><contributor>Rudolph, Larry</contributor><contributor>Feitelson, Dror G.</contributor><creatorcontrib>England, Darin</creatorcontrib><creatorcontrib>Weissman, Jon B.</creatorcontrib><title>Costs and Benefits of Load Sharing in the Computational Grid</title><title>Job Scheduling Strategies for Parallel Processing</title><description>We present an analysis of the costs and benefits of load sharing of parallel jobs in the computational grid. We begin with a workload generation model that captures the essential properties of parallel jobs and use it as input to a grid simulation model. Our experiments are performed for both homogeneous and heterogeneous grids. We measured average job slowdown with respect to both local and remote jobs and we show that, with some reasonable assumptions concerning the migration policy, load sharing proves to be beneficial when the grid is homogeneous, and that load sharing can adversely affect job slowdown for lightly-loaded machines in a heterogeneous grid. With respect to the number of sites in a grid, we find that the benefits obtained by load sharing do not scale well. Small to modest-size grids can employ load sharing as effectively as large-scale grids. We also present and evaluate an effective scheduling heuristic for migrating a job within the grid.</description><subject>Applied sciences</subject><subject>Average Slowdown</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Heterogeneous Grid</subject><subject>Load Sharing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Queue Time</subject><subject>Scheduling, sequencing</subject><subject>Software</subject><subject>Workload Model</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540253300</isbn><isbn>9783540253303</isbn><isbn>3540317953</isbn><isbn>9783540317951</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFUE1LxDAUjF_guu7FX5CL4KX6Xl_SJOBFi65CwYN6LmmbuNHdpjT14L93lxWcyzDMMAzD2AXCNQKoG0QBSuZ5bQ7YGUkBhMpIOmQzLBAzImGO9kYuiQCO2QwI8swoQadskdInbEGopVAzdlvGNCVu-47fu975sBXR8yrajr-u7Bj6Dx56Pq0cL-Nm-J7sFGJv13w5hu6cnXi7Tm7xx3P2_vjwVj5l1cvyubyrsiGXYsqaFiRq3ahCWge6yA1aDSC9aBxpQ4KsVIWz5J0oOtLaE1HRmrY1yiE6mrPLfe9gU2vXfrR9G1I9jGFjx58aC22ENrjNXe1zadgNd2PdxPiVaoR6d139fx39Aju1WTg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>England, Darin</creator><creator>Weissman, Jon B.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Costs and Benefits of Load Sharing in the Computational Grid</title><author>England, Darin ; Weissman, Jon B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p254t-bc05188b765ae086291a8005f4be389343a576ea3fe46d388f3336c9cc97e11e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Average Slowdown</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Heterogeneous Grid</topic><topic>Load Sharing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Queue Time</topic><topic>Scheduling, sequencing</topic><topic>Software</topic><topic>Workload Model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>England, Darin</creatorcontrib><creatorcontrib>Weissman, Jon B.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>England, Darin</au><au>Weissman, Jon B.</au><au>Schwiegelshohn, Uwe</au><au>Rudolph, Larry</au><au>Feitelson, Dror G.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Costs and Benefits of Load Sharing in the Computational Grid</atitle><btitle>Job Scheduling Strategies for Parallel Processing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>160</spage><epage>175</epage><pages>160-175</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540253300</isbn><isbn>9783540253303</isbn><eisbn>3540317953</eisbn><eisbn>9783540317951</eisbn><abstract>We present an analysis of the costs and benefits of load sharing of parallel jobs in the computational grid. We begin with a workload generation model that captures the essential properties of parallel jobs and use it as input to a grid simulation model. Our experiments are performed for both homogeneous and heterogeneous grids. We measured average job slowdown with respect to both local and remote jobs and we show that, with some reasonable assumptions concerning the migration policy, load sharing proves to be beneficial when the grid is homogeneous, and that load sharing can adversely affect job slowdown for lightly-loaded machines in a heterogeneous grid. With respect to the number of sites in a grid, we find that the benefits obtained by load sharing do not scale well. Small to modest-size grids can employ load sharing as effectively as large-scale grids. We also present and evaluate an effective scheduling heuristic for migrating a job within the grid.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11407522_9</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Job Scheduling Strategies for Parallel Processing, 2005, p.160-175 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16894891 |
source | Springer Books |
subjects | Applied sciences Average Slowdown Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Heterogeneous Grid Load Sharing Operational research and scientific management Operational research. Management science Queue Time Scheduling, sequencing Software Workload Model |
title | Costs and Benefits of Load Sharing in the Computational Grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Costs%20and%20Benefits%20of%20Load%20Sharing%20in%20the%20Computational%20Grid&rft.btitle=Job%20Scheduling%20Strategies%20for%20Parallel%20Processing&rft.au=England,%20Darin&rft.date=2005&rft.spage=160&rft.epage=175&rft.pages=160-175&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540253300&rft.isbn_list=9783540253303&rft_id=info:doi/10.1007/11407522_9&rft_dat=%3Cpascalfrancis_sprin%3E16894891%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540317953&rft.eisbn_list=9783540317951&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |