Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs
Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | |
container_start_page | 536 |
container_title | |
container_volume | |
creator | Breuß, Michael Brox, Thomas Sonar, Thomas Weickert, Joachim |
description | Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis. |
doi_str_mv | 10.1007/11408031_46 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16894711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16894711</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-27c66547d7be87d4ba9c371cbe16a26eb45d74b2b36241c379dd6cc0ed46820f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRCmd-ANZGBgCfm3HjseqLbRSBUjAbPkrlSE4kV0Q_fekKgO33PCcTqdD6ArwLWAs7gAYrjEFxfgRuqAVw5RgIHCMRsABSkqZPEETKeo9I1XFRHWKRphiUkrB6Dma5PyOB1GQEssRWr5stQltyN4Vj11sQ_Q6Fav47VP2xTw0zVcOXSyaLhXTvk_dT_jU2xA3xXLX-2S6Ntjieb7Il-is0W32kz8fo7f7xetsWa6fHlaz6brsCchtSYTlfJjlhPG1cMxoaakAazxwTbg3rHKCGWIoJwwGJJ3j1mLvGK8JbugYXR96e52tbpukow1Z9WnYlXYKeC2ZABhyN4dcHlDc-KRM131kBVjtr1T_rqS_HIpgWA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</title><source>Springer Books</source><creator>Breuß, Michael ; Brox, Thomas ; Sonar, Thomas ; Weickert, Joachim</creator><contributor>Sochen, Nir A. ; Weickert, Joachim ; Kimmel, Ron</contributor><creatorcontrib>Breuß, Michael ; Brox, Thomas ; Sonar, Thomas ; Weickert, Joachim ; Sochen, Nir A. ; Weickert, Joachim ; Kimmel, Ron</creatorcontrib><description>Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540255475</identifier><identifier>ISBN: 3540255478</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320121</identifier><identifier>EISBN: 9783540320128</identifier><identifier>DOI: 10.1007/11408031_46</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropic Diffusion ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Hyperbolic PDEs ; Numerical Diffusion ; Pattern recognition. Digital image processing. Computational geometry ; Total Variation Diminish ; Upwind Scheme</subject><ispartof>Lecture notes in computer science, 2005, p.536-547</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11408031_46$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11408031_46$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4047,4048,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16894711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sochen, Nir A.</contributor><contributor>Weickert, Joachim</contributor><contributor>Kimmel, Ron</contributor><creatorcontrib>Breuß, Michael</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Sonar, Thomas</creatorcontrib><creatorcontrib>Weickert, Joachim</creatorcontrib><title>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</title><title>Lecture notes in computer science</title><description>Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.</description><subject>Anisotropic Diffusion</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic PDEs</subject><subject>Numerical Diffusion</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Total Variation Diminish</subject><subject>Upwind Scheme</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540255475</isbn><isbn>3540255478</isbn><isbn>3540320121</isbn><isbn>9783540320128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRCmd-ANZGBgCfm3HjseqLbRSBUjAbPkrlSE4kV0Q_fekKgO33PCcTqdD6ArwLWAs7gAYrjEFxfgRuqAVw5RgIHCMRsABSkqZPEETKeo9I1XFRHWKRphiUkrB6Dma5PyOB1GQEssRWr5stQltyN4Vj11sQ_Q6Fav47VP2xTw0zVcOXSyaLhXTvk_dT_jU2xA3xXLX-2S6Ntjieb7Il-is0W32kz8fo7f7xetsWa6fHlaz6brsCchtSYTlfJjlhPG1cMxoaakAazxwTbg3rHKCGWIoJwwGJJ3j1mLvGK8JbugYXR96e52tbpukow1Z9WnYlXYKeC2ZABhyN4dcHlDc-KRM131kBVjtr1T_rqS_HIpgWA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Breuß, Michael</creator><creator>Brox, Thomas</creator><creator>Sonar, Thomas</creator><creator>Weickert, Joachim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</title><author>Breuß, Michael ; Brox, Thomas ; Sonar, Thomas ; Weickert, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-27c66547d7be87d4ba9c371cbe16a26eb45d74b2b36241c379dd6cc0ed46820f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic Diffusion</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic PDEs</topic><topic>Numerical Diffusion</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Total Variation Diminish</topic><topic>Upwind Scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breuß, Michael</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Sonar, Thomas</creatorcontrib><creatorcontrib>Weickert, Joachim</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breuß, Michael</au><au>Brox, Thomas</au><au>Sonar, Thomas</au><au>Weickert, Joachim</au><au>Sochen, Nir A.</au><au>Weickert, Joachim</au><au>Kimmel, Ron</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>536</spage><epage>547</epage><pages>536-547</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540255475</isbn><isbn>3540255478</isbn><eisbn>3540320121</eisbn><eisbn>9783540320128</eisbn><abstract>Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11408031_46</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.536-547 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16894711 |
source | Springer Books |
subjects | Anisotropic Diffusion Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Hyperbolic PDEs Numerical Diffusion Pattern recognition. Digital image processing. Computational geometry Total Variation Diminish Upwind Scheme |
title | Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stabilised%20Nonlinear%20Inverse%20Diffusion%20for%20Approximating%20Hyperbolic%20PDEs&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Breu%C3%9F,%20Michael&rft.date=2005&rft.spage=536&rft.epage=547&rft.pages=536-547&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540255475&rft.isbn_list=3540255478&rft_id=info:doi/10.1007/11408031_46&rft_dat=%3Cpascalfrancis_sprin%3E16894711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320121&rft.eisbn_list=9783540320128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |