Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs

Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Breuß, Michael, Brox, Thomas, Sonar, Thomas, Weickert, Joachim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue
container_start_page 536
container_title
container_volume
creator Breuß, Michael
Brox, Thomas
Sonar, Thomas
Weickert, Joachim
description Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.
doi_str_mv 10.1007/11408031_46
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16894711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16894711</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-27c66547d7be87d4ba9c371cbe16a26eb45d74b2b36241c379dd6cc0ed46820f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRCmd-ANZGBgCfm3HjseqLbRSBUjAbPkrlSE4kV0Q_fekKgO33PCcTqdD6ArwLWAs7gAYrjEFxfgRuqAVw5RgIHCMRsABSkqZPEETKeo9I1XFRHWKRphiUkrB6Dma5PyOB1GQEssRWr5stQltyN4Vj11sQ_Q6Fav47VP2xTw0zVcOXSyaLhXTvk_dT_jU2xA3xXLX-2S6Ntjieb7Il-is0W32kz8fo7f7xetsWa6fHlaz6brsCchtSYTlfJjlhPG1cMxoaakAazxwTbg3rHKCGWIoJwwGJJ3j1mLvGK8JbugYXR96e52tbpukow1Z9WnYlXYKeC2ZABhyN4dcHlDc-KRM131kBVjtr1T_rqS_HIpgWA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</title><source>Springer Books</source><creator>Breuß, Michael ; Brox, Thomas ; Sonar, Thomas ; Weickert, Joachim</creator><contributor>Sochen, Nir A. ; Weickert, Joachim ; Kimmel, Ron</contributor><creatorcontrib>Breuß, Michael ; Brox, Thomas ; Sonar, Thomas ; Weickert, Joachim ; Sochen, Nir A. ; Weickert, Joachim ; Kimmel, Ron</creatorcontrib><description>Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540255475</identifier><identifier>ISBN: 3540255478</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320121</identifier><identifier>EISBN: 9783540320128</identifier><identifier>DOI: 10.1007/11408031_46</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropic Diffusion ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Hyperbolic PDEs ; Numerical Diffusion ; Pattern recognition. Digital image processing. Computational geometry ; Total Variation Diminish ; Upwind Scheme</subject><ispartof>Lecture notes in computer science, 2005, p.536-547</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11408031_46$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11408031_46$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4047,4048,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16894711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sochen, Nir A.</contributor><contributor>Weickert, Joachim</contributor><contributor>Kimmel, Ron</contributor><creatorcontrib>Breuß, Michael</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Sonar, Thomas</creatorcontrib><creatorcontrib>Weickert, Joachim</creatorcontrib><title>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</title><title>Lecture notes in computer science</title><description>Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.</description><subject>Anisotropic Diffusion</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic PDEs</subject><subject>Numerical Diffusion</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Total Variation Diminish</subject><subject>Upwind Scheme</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540255475</isbn><isbn>3540255478</isbn><isbn>3540320121</isbn><isbn>9783540320128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRCmd-ANZGBgCfm3HjseqLbRSBUjAbPkrlSE4kV0Q_fekKgO33PCcTqdD6ArwLWAs7gAYrjEFxfgRuqAVw5RgIHCMRsABSkqZPEETKeo9I1XFRHWKRphiUkrB6Dma5PyOB1GQEssRWr5stQltyN4Vj11sQ_Q6Fav47VP2xTw0zVcOXSyaLhXTvk_dT_jU2xA3xXLX-2S6Ntjieb7Il-is0W32kz8fo7f7xetsWa6fHlaz6brsCchtSYTlfJjlhPG1cMxoaakAazxwTbg3rHKCGWIoJwwGJJ3j1mLvGK8JbugYXR96e52tbpukow1Z9WnYlXYKeC2ZABhyN4dcHlDc-KRM131kBVjtr1T_rqS_HIpgWA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Breuß, Michael</creator><creator>Brox, Thomas</creator><creator>Sonar, Thomas</creator><creator>Weickert, Joachim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</title><author>Breuß, Michael ; Brox, Thomas ; Sonar, Thomas ; Weickert, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-27c66547d7be87d4ba9c371cbe16a26eb45d74b2b36241c379dd6cc0ed46820f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic Diffusion</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic PDEs</topic><topic>Numerical Diffusion</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Total Variation Diminish</topic><topic>Upwind Scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breuß, Michael</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Sonar, Thomas</creatorcontrib><creatorcontrib>Weickert, Joachim</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breuß, Michael</au><au>Brox, Thomas</au><au>Sonar, Thomas</au><au>Weickert, Joachim</au><au>Sochen, Nir A.</au><au>Weickert, Joachim</au><au>Kimmel, Ron</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>536</spage><epage>547</epage><pages>536-547</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540255475</isbn><isbn>3540255478</isbn><eisbn>3540320121</eisbn><eisbn>9783540320128</eisbn><abstract>Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11408031_46</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.536-547
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16894711
source Springer Books
subjects Anisotropic Diffusion
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Hyperbolic PDEs
Numerical Diffusion
Pattern recognition. Digital image processing. Computational geometry
Total Variation Diminish
Upwind Scheme
title Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stabilised%20Nonlinear%20Inverse%20Diffusion%20for%20Approximating%20Hyperbolic%20PDEs&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Breu%C3%9F,%20Michael&rft.date=2005&rft.spage=536&rft.epage=547&rft.pages=536-547&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540255475&rft.isbn_list=3540255478&rft_id=info:doi/10.1007/11408031_46&rft_dat=%3Cpascalfrancis_sprin%3E16894711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320121&rft.eisbn_list=9783540320128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true