Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features

We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kang, Yousun, Morooka, Ken’ichi, Nagahashi, Hiroshi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 373
container_issue
container_start_page 363
container_title
container_volume
creator Kang, Yousun
Morooka, Ken’ichi
Nagahashi, Hiroshi
description We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear discriminant classifier (LDA) is employed in the multi-scale feature space. The scale rate of test patterns in their reduced subspace can also be estimated by principal component analysis (PCA). This subspace represents the scale variation of each scale step by principal components of a training texture image. Experimental results show that the proposed method is effective in not only scale invariant texture classification including estimation of scale rate, but also scale invariant segmentation of 2D image for scene analysis.
doi_str_mv 10.1007/11408031_31
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16894708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16894708</sourcerecordid><originalsourceid>FETCH-LOGICAL-n263t-a646b8b36a74a0e925ca9cff47624ec48dd420f83247589869fafee0d76f3d53</originalsourceid><addsrcrecordid>eNpNkDtPw0AQhI-XRAip-ANuKCgMew_fo4wiApGCECLUp419FxnMObpzEPn32ISCbaaYb1c7Q8gVhVsKoO4oFaCBU8vpEbnghQDOgDJ6TEZUUppzLswJmRilB48VhVDFKRkBB5YbJfg5maT0Dv1wagyYEXl5LbFx2SJ8YawxdNnKfXe76LJpwGaf6pS9pTpssqdd09V5-oWXbS_ZdNe1ZRuja7Cr25DNHQ6L6ZKceWySm_zpmKzm96vZY758fljMpss8MMm7HKWQa73mEpVAcIYVJZrSe6EkE64UuqoEA6856zNoo6Xx6J2DSknPq4KPyfXh7BaHr3zEUNbJbmP9iXFvqdRGKNA9d3PgUm-FjYt23bYfyVKwQ6X2X6X8B7MDY3I</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features</title><source>Springer Books</source><creator>Kang, Yousun ; Morooka, Ken’ichi ; Nagahashi, Hiroshi</creator><contributor>Sochen, Nir A. ; Weickert, Joachim ; Kimmel, Ron</contributor><creatorcontrib>Kang, Yousun ; Morooka, Ken’ichi ; Nagahashi, Hiroshi ; Sochen, Nir A. ; Weickert, Joachim ; Kimmel, Ron</creatorcontrib><description>We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear discriminant classifier (LDA) is employed in the multi-scale feature space. The scale rate of test patterns in their reduced subspace can also be estimated by principal component analysis (PCA). This subspace represents the scale variation of each scale step by principal components of a training texture image. Experimental results show that the proposed method is effective in not only scale invariant texture classification including estimation of scale rate, but also scale invariant segmentation of 2D image for scene analysis.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540255475</identifier><identifier>ISBN: 3540255478</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320121</identifier><identifier>EISBN: 9783540320128</identifier><identifier>DOI: 10.1007/11408031_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Feature Vector ; Linear Discriminant Analysis ; Pattern recognition. Digital image processing. Computational geometry ; Texture Gradient ; Texture Image ; Texture Pattern</subject><ispartof>Lecture notes in computer science, 2005, p.363-373</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11408031_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11408031_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16894708$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sochen, Nir A.</contributor><contributor>Weickert, Joachim</contributor><contributor>Kimmel, Ron</contributor><creatorcontrib>Kang, Yousun</creatorcontrib><creatorcontrib>Morooka, Ken’ichi</creatorcontrib><creatorcontrib>Nagahashi, Hiroshi</creatorcontrib><title>Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features</title><title>Lecture notes in computer science</title><description>We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear discriminant classifier (LDA) is employed in the multi-scale feature space. The scale rate of test patterns in their reduced subspace can also be estimated by principal component analysis (PCA). This subspace represents the scale variation of each scale step by principal components of a training texture image. Experimental results show that the proposed method is effective in not only scale invariant texture classification including estimation of scale rate, but also scale invariant segmentation of 2D image for scene analysis.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Feature Vector</subject><subject>Linear Discriminant Analysis</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Texture Gradient</subject><subject>Texture Image</subject><subject>Texture Pattern</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540255475</isbn><isbn>3540255478</isbn><isbn>3540320121</isbn><isbn>9783540320128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPw0AQhI-XRAip-ANuKCgMew_fo4wiApGCECLUp419FxnMObpzEPn32ISCbaaYb1c7Q8gVhVsKoO4oFaCBU8vpEbnghQDOgDJ6TEZUUppzLswJmRilB48VhVDFKRkBB5YbJfg5maT0Dv1wagyYEXl5LbFx2SJ8YawxdNnKfXe76LJpwGaf6pS9pTpssqdd09V5-oWXbS_ZdNe1ZRuja7Cr25DNHQ6L6ZKceWySm_zpmKzm96vZY758fljMpss8MMm7HKWQa73mEpVAcIYVJZrSe6EkE64UuqoEA6856zNoo6Xx6J2DSknPq4KPyfXh7BaHr3zEUNbJbmP9iXFvqdRGKNA9d3PgUm-FjYt23bYfyVKwQ6X2X6X8B7MDY3I</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Kang, Yousun</creator><creator>Morooka, Ken’ichi</creator><creator>Nagahashi, Hiroshi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20050101</creationdate><title>Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features</title><author>Kang, Yousun ; Morooka, Ken’ichi ; Nagahashi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n263t-a646b8b36a74a0e925ca9cff47624ec48dd420f83247589869fafee0d76f3d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Feature Vector</topic><topic>Linear Discriminant Analysis</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Texture Gradient</topic><topic>Texture Image</topic><topic>Texture Pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yousun</creatorcontrib><creatorcontrib>Morooka, Ken’ichi</creatorcontrib><creatorcontrib>Nagahashi, Hiroshi</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yousun</au><au>Morooka, Ken’ichi</au><au>Nagahashi, Hiroshi</au><au>Sochen, Nir A.</au><au>Weickert, Joachim</au><au>Kimmel, Ron</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features</atitle><btitle>Lecture notes in computer science</btitle><date>2005-01-01</date><risdate>2005</risdate><spage>363</spage><epage>373</epage><pages>363-373</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540255475</isbn><isbn>3540255478</isbn><eisbn>3540320121</eisbn><eisbn>9783540320128</eisbn><abstract>We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear discriminant classifier (LDA) is employed in the multi-scale feature space. The scale rate of test patterns in their reduced subspace can also be estimated by principal component analysis (PCA). This subspace represents the scale variation of each scale step by principal components of a training texture image. Experimental results show that the proposed method is effective in not only scale invariant texture classification including estimation of scale rate, but also scale invariant segmentation of 2D image for scene analysis.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11408031_31</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.363-373
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16894708
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Feature Vector
Linear Discriminant Analysis
Pattern recognition. Digital image processing. Computational geometry
Texture Gradient
Texture Image
Texture Pattern
title Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scale%20Invariant%20Texture%20Analysis%20Using%20Multi-scale%20Local%20Autocorrelation%20Features&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Kang,%20Yousun&rft.date=2005-01-01&rft.spage=363&rft.epage=373&rft.pages=363-373&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540255475&rft.isbn_list=3540255478&rft_id=info:doi/10.1007/11408031_31&rft_dat=%3Cpascalfrancis_sprin%3E16894708%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320121&rft.eisbn_list=9783540320128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true