A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber

Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liao, Changrong, Zhang, Honghui, Yu, Miao, Chen, Weimin, Weng, Jiansheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue
container_start_page 890
container_title
container_volume
creator Liao, Changrong
Zhang, Honghui
Yu, Miao
Chen, Weimin
Weng, Jiansheng
description Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.
doi_str_mv 10.1007/11427469_141
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882907</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1351-c6da34dfeb664f570fc41cf32e9121ba2f2f2e1a127ee674ba8cede227fc900d3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JUnrjA3zhghTw2o5dH6uKAlILEo8Ll8hx1mloGldOAuLvCSoHdg4jzcyuVkPIBbBrYEzfAEiupTIZSDggZyKVTHCmTHpIRqAAEiGkOdobPDUg9TEZMcF4YrQUp2TSth9sGAFqUEfkfUaf0fUxYtPRR-yjrQfqvkLc0FUosK6akvoQ6azvwjZ01SfSlS0b7EJcY6hDWblhZVH3VUFf1sFt6CxvQ8wxnpMTb-sWJ388Jm-L29f5fbJ8unuYz5bJDkQKiVOFFbLwmCslfaqZdxKcFxwNcMgt9wMQLHCNqLTM7dRhgZxr7wxjhRiTy_3dnW2HX3y0javabBerrY3fGajplBumh9zVPtcOVlNizPIQNm0GLPutNvtfrfgBPAdnXQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</title><source>Springer Books</source><creator>Liao, Changrong ; Zhang, Honghui ; Yu, Miao ; Chen, Weimin ; Weng, Jiansheng</creator><contributor>Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</contributor><creatorcontrib>Liao, Changrong ; Zhang, Honghui ; Yu, Miao ; Chen, Weimin ; Weng, Jiansheng ; Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</creatorcontrib><description>Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540259147</identifier><identifier>ISBN: 9783540259145</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320695</identifier><identifier>EISBN: 9783540320692</identifier><identifier>DOI: 10.1007/11427469_141</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.890-896</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427469_141$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427469_141$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16882907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiao-Feng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Liao, Changrong</creatorcontrib><creatorcontrib>Zhang, Honghui</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Chen, Weimin</creatorcontrib><creatorcontrib>Weng, Jiansheng</creatorcontrib><title>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</title><title>Advances in Neural Networks – ISNN 2005</title><description>Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>3540320695</isbn><isbn>9783540320692</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUMtOwzAQNC-JUnrjA3zhghTw2o5dH6uKAlILEo8Ll8hx1mloGldOAuLvCSoHdg4jzcyuVkPIBbBrYEzfAEiupTIZSDggZyKVTHCmTHpIRqAAEiGkOdobPDUg9TEZMcF4YrQUp2TSth9sGAFqUEfkfUaf0fUxYtPRR-yjrQfqvkLc0FUosK6akvoQ6azvwjZ01SfSlS0b7EJcY6hDWblhZVH3VUFf1sFt6CxvQ8wxnpMTb-sWJ388Jm-L29f5fbJ8unuYz5bJDkQKiVOFFbLwmCslfaqZdxKcFxwNcMgt9wMQLHCNqLTM7dRhgZxr7wxjhRiTy_3dnW2HX3y0javabBerrY3fGajplBumh9zVPtcOVlNizPIQNm0GLPutNvtfrfgBPAdnXQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Liao, Changrong</creator><creator>Zhang, Honghui</creator><creator>Yu, Miao</creator><creator>Chen, Weimin</creator><creator>Weng, Jiansheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</title><author>Liao, Changrong ; Zhang, Honghui ; Yu, Miao ; Chen, Weimin ; Weng, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1351-c6da34dfeb664f570fc41cf32e9121ba2f2f2e1a127ee674ba8cede227fc900d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Changrong</creatorcontrib><creatorcontrib>Zhang, Honghui</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Chen, Weimin</creatorcontrib><creatorcontrib>Weng, Jiansheng</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Changrong</au><au>Zhang, Honghui</au><au>Yu, Miao</au><au>Chen, Weimin</au><au>Weng, Jiansheng</au><au>Yi, Zhang</au><au>Liao, Xiao-Feng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>890</spage><epage>896</epage><pages>890-896</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>3540320695</eisbn><eisbn>9783540320692</eisbn><abstract>Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427469_141</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks – ISNN 2005, 2005, p.890-896
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16882907
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
title A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Recurrent%20Neural%20Network%20Modeling%20for%20Automotive%20Magnetorheological%20Fluid%20Shock%20Absorber&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Liao,%20Changrong&rft.date=2005&rft.spage=890&rft.epage=896&rft.pages=890-896&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540259147&rft.isbn_list=9783540259145&rft.isbn_list=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427469_141&rft_dat=%3Cpascalfrancis_sprin%3E16882907%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320695&rft.eisbn_list=9783540320692&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true