A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber
Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurren...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | |
container_start_page | 890 |
container_title | |
container_volume | |
creator | Liao, Changrong Zhang, Honghui Yu, Miao Chen, Weimin Weng, Jiansheng |
description | Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions. |
doi_str_mv | 10.1007/11427469_141 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882907</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1351-c6da34dfeb664f570fc41cf32e9121ba2f2f2e1a127ee674ba8cede227fc900d3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JUnrjA3zhghTw2o5dH6uKAlILEo8Ll8hx1mloGldOAuLvCSoHdg4jzcyuVkPIBbBrYEzfAEiupTIZSDggZyKVTHCmTHpIRqAAEiGkOdobPDUg9TEZMcF4YrQUp2TSth9sGAFqUEfkfUaf0fUxYtPRR-yjrQfqvkLc0FUosK6akvoQ6azvwjZ01SfSlS0b7EJcY6hDWblhZVH3VUFf1sFt6CxvQ8wxnpMTb-sWJ388Jm-L29f5fbJ8unuYz5bJDkQKiVOFFbLwmCslfaqZdxKcFxwNcMgt9wMQLHCNqLTM7dRhgZxr7wxjhRiTy_3dnW2HX3y0javabBerrY3fGajplBumh9zVPtcOVlNizPIQNm0GLPutNvtfrfgBPAdnXQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</title><source>Springer Books</source><creator>Liao, Changrong ; Zhang, Honghui ; Yu, Miao ; Chen, Weimin ; Weng, Jiansheng</creator><contributor>Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</contributor><creatorcontrib>Liao, Changrong ; Zhang, Honghui ; Yu, Miao ; Chen, Weimin ; Weng, Jiansheng ; Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</creatorcontrib><description>Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540259147</identifier><identifier>ISBN: 9783540259145</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320695</identifier><identifier>EISBN: 9783540320692</identifier><identifier>DOI: 10.1007/11427469_141</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.890-896</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427469_141$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427469_141$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16882907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiao-Feng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Liao, Changrong</creatorcontrib><creatorcontrib>Zhang, Honghui</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Chen, Weimin</creatorcontrib><creatorcontrib>Weng, Jiansheng</creatorcontrib><title>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</title><title>Advances in Neural Networks – ISNN 2005</title><description>Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>3540320695</isbn><isbn>9783540320692</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUMtOwzAQNC-JUnrjA3zhghTw2o5dH6uKAlILEo8Ll8hx1mloGldOAuLvCSoHdg4jzcyuVkPIBbBrYEzfAEiupTIZSDggZyKVTHCmTHpIRqAAEiGkOdobPDUg9TEZMcF4YrQUp2TSth9sGAFqUEfkfUaf0fUxYtPRR-yjrQfqvkLc0FUosK6akvoQ6azvwjZ01SfSlS0b7EJcY6hDWblhZVH3VUFf1sFt6CxvQ8wxnpMTb-sWJ388Jm-L29f5fbJ8unuYz5bJDkQKiVOFFbLwmCslfaqZdxKcFxwNcMgt9wMQLHCNqLTM7dRhgZxr7wxjhRiTy_3dnW2HX3y0javabBerrY3fGajplBumh9zVPtcOVlNizPIQNm0GLPutNvtfrfgBPAdnXQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Liao, Changrong</creator><creator>Zhang, Honghui</creator><creator>Yu, Miao</creator><creator>Chen, Weimin</creator><creator>Weng, Jiansheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</title><author>Liao, Changrong ; Zhang, Honghui ; Yu, Miao ; Chen, Weimin ; Weng, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1351-c6da34dfeb664f570fc41cf32e9121ba2f2f2e1a127ee674ba8cede227fc900d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Changrong</creatorcontrib><creatorcontrib>Zhang, Honghui</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Chen, Weimin</creatorcontrib><creatorcontrib>Weng, Jiansheng</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Changrong</au><au>Zhang, Honghui</au><au>Yu, Miao</au><au>Chen, Weimin</au><au>Weng, Jiansheng</au><au>Yi, Zhang</au><au>Liao, Xiao-Feng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>890</spage><epage>896</epage><pages>890-896</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>3540320695</eisbn><eisbn>9783540320692</eisbn><abstract>Automotive Magnetorheological (MR) fluid shock absorbers have been previously characterized by a series of nonlinear differential equations, which have some difficulties in developing control systems. This paper presents a recurrent neural network with 3 input neurons, 1 output neuron and 5 recurrent neurons in the hidden layer to simulate behavior of MR fluid shock absorbers to develop control algorithms for suspension systems. A recursive prediction error algorithm has been applied to train the recurrent neural network using test data from lab where the MR fluid shock absorbers were tested by the MTS electro-hydraulic servo vibrator system. Training of neural network model has been done by means of the recursive prediction error algorithm presented in this paper and data generated from test in laboratory. In comparison with experimental results of MR fluid shock absorbers, the neural network models are reasonably accurate to depict performances of MR fluid shock absorber over a wide range of operating conditions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427469_141</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Neural Networks – ISNN 2005, 2005, p.890-896 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16882907 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Learning and adaptive systems |
title | A Recurrent Neural Network Modeling for Automotive Magnetorheological Fluid Shock Absorber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Recurrent%20Neural%20Network%20Modeling%20for%20Automotive%20Magnetorheological%20Fluid%20Shock%20Absorber&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Liao,%20Changrong&rft.date=2005&rft.spage=890&rft.epage=896&rft.pages=890-896&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540259147&rft.isbn_list=9783540259145&rft.isbn_list=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427469_141&rft_dat=%3Cpascalfrancis_sprin%3E16882907%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320695&rft.eisbn_list=9783540320692&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |