Design of Rule-Based Neurofuzzy Networks by Means of Genetic Fuzzy Set-Based Granulation

In this paper, new architectures and design methodologies of Rule based Neurofuzzy Networks (RNFN) are introduced and the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. The proposed RNFN is based on the fuzzy set based neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Park, Byoungjun, Oh, Sungkwun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue
container_start_page 422
container_title
container_volume
creator Park, Byoungjun
Oh, Sungkwun
description In this paper, new architectures and design methodologies of Rule based Neurofuzzy Networks (RNFN) are introduced and the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. The proposed RNFN is based on the fuzzy set based neurofuzzy networks (NFN) with the extended structure of fuzzy rules being formed within the networks. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and modified quadratic are taken into consideration. The dynamic search-based GAs optimizes the structure and parameters of the RNFN.
doi_str_mv 10.1007/11427391_67
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882811</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-8325e5f99f85c375d48be7636478fa5addb70e6c422925f235b64a4f1fc1e8cc3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1Loipd8QPZsGAR8PjtJbS0IBWQeEjsLMexq9CQVHEi1H49Ka0Qs5nR3DNXo4vQOeArwFheAzAiqQYj5AEaaakoZ5gSLDg7RAMQACmlTB_9aYRrIHCMBphikmrJ6CkaxfiJ-6Ig-u0AfUx8LBZVUofkpSt9emujz5Mn3zV16DabdT-233WzjEm2Th69reIWnfnKt4VLpr_Iq2_3d7PGVl1p26KuztBJsGX0o30fovfp3dv4Pp0_zx7GN_N0RUC3qaKEex60Doo7KnnOVOaloIJJFSy3eZ5J7IVjhGjCA6E8E8yyAMGBV87RIbrY-a5sdLYM_QeuiGbVFF-2WRsQShEF0HOXOy72UrXwjcnqehkNYLNN1_xLl_4Ab45mGw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of Rule-Based Neurofuzzy Networks by Means of Genetic Fuzzy Set-Based Granulation</title><source>Springer Books</source><creator>Park, Byoungjun ; Oh, Sungkwun</creator><contributor>Yi, Zhang ; Liao, Xiaofeng ; Wang, Jun</contributor><creatorcontrib>Park, Byoungjun ; Oh, Sungkwun ; Yi, Zhang ; Liao, Xiaofeng ; Wang, Jun</creatorcontrib><description>In this paper, new architectures and design methodologies of Rule based Neurofuzzy Networks (RNFN) are introduced and the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. The proposed RNFN is based on the fuzzy set based neurofuzzy networks (NFN) with the extended structure of fuzzy rules being formed within the networks. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and modified quadratic are taken into consideration. The dynamic search-based GAs optimizes the structure and parameters of the RNFN.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320654</identifier><identifier>EISBN: 3540320652</identifier><identifier>DOI: 10.1007/11427391_67</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Consequence Part ; Exact sciences and technology ; Fuzzy Modeling ; Fuzzy Neural Network ; Fuzzy Rule ; Learning and adaptive systems ; Optimal Convergence</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.422-427</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427391_67$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427391_67$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16882811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiaofeng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Park, Byoungjun</creatorcontrib><creatorcontrib>Oh, Sungkwun</creatorcontrib><title>Design of Rule-Based Neurofuzzy Networks by Means of Genetic Fuzzy Set-Based Granulation</title><title>Advances in Neural Networks – ISNN 2005</title><description>In this paper, new architectures and design methodologies of Rule based Neurofuzzy Networks (RNFN) are introduced and the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. The proposed RNFN is based on the fuzzy set based neurofuzzy networks (NFN) with the extended structure of fuzzy rules being formed within the networks. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and modified quadratic are taken into consideration. The dynamic search-based GAs optimizes the structure and parameters of the RNFN.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Consequence Part</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Modeling</subject><subject>Fuzzy Neural Network</subject><subject>Fuzzy Rule</subject><subject>Learning and adaptive systems</subject><subject>Optimal Convergence</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>9783540320654</isbn><isbn>3540320652</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtOwzAQRc1Loipd8QPZsGAR8PjtJbS0IBWQeEjsLMexq9CQVHEi1H49Ka0Qs5nR3DNXo4vQOeArwFheAzAiqQYj5AEaaakoZ5gSLDg7RAMQACmlTB_9aYRrIHCMBphikmrJ6CkaxfiJ-6Ig-u0AfUx8LBZVUofkpSt9emujz5Mn3zV16DabdT-233WzjEm2Th69reIWnfnKt4VLpr_Iq2_3d7PGVl1p26KuztBJsGX0o30fovfp3dv4Pp0_zx7GN_N0RUC3qaKEex60Doo7KnnOVOaloIJJFSy3eZ5J7IVjhGjCA6E8E8yyAMGBV87RIbrY-a5sdLYM_QeuiGbVFF-2WRsQShEF0HOXOy72UrXwjcnqehkNYLNN1_xLl_4Ab45mGw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Park, Byoungjun</creator><creator>Oh, Sungkwun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Design of Rule-Based Neurofuzzy Networks by Means of Genetic Fuzzy Set-Based Granulation</title><author>Park, Byoungjun ; Oh, Sungkwun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-8325e5f99f85c375d48be7636478fa5addb70e6c422925f235b64a4f1fc1e8cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Consequence Part</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Modeling</topic><topic>Fuzzy Neural Network</topic><topic>Fuzzy Rule</topic><topic>Learning and adaptive systems</topic><topic>Optimal Convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Byoungjun</creatorcontrib><creatorcontrib>Oh, Sungkwun</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Byoungjun</au><au>Oh, Sungkwun</au><au>Yi, Zhang</au><au>Liao, Xiaofeng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of Rule-Based Neurofuzzy Networks by Means of Genetic Fuzzy Set-Based Granulation</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>422</spage><epage>427</epage><pages>422-427</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>9783540320654</eisbn><eisbn>3540320652</eisbn><abstract>In this paper, new architectures and design methodologies of Rule based Neurofuzzy Networks (RNFN) are introduced and the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. The proposed RNFN is based on the fuzzy set based neurofuzzy networks (NFN) with the extended structure of fuzzy rules being formed within the networks. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and modified quadratic are taken into consideration. The dynamic search-based GAs optimizes the structure and parameters of the RNFN.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427391_67</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks – ISNN 2005, 2005, p.422-427
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16882811
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Consequence Part
Exact sciences and technology
Fuzzy Modeling
Fuzzy Neural Network
Fuzzy Rule
Learning and adaptive systems
Optimal Convergence
title Design of Rule-Based Neurofuzzy Networks by Means of Genetic Fuzzy Set-Based Granulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20Rule-Based%20Neurofuzzy%20Networks%20by%20Means%20of%20Genetic%20Fuzzy%20Set-Based%20Granulation&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Park,%20Byoungjun&rft.date=2005&rft.spage=422&rft.epage=427&rft.pages=422-427&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427391_67&rft_dat=%3Cpascalfrancis_sprin%3E16882811%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320654&rft.eisbn_list=3540320652&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true