Application of Multi-weighted Neuron for Iris Recognition

In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as “cognition” one class by one class, and it doesn’t influence the ori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao, Wenming, Hu, Jianhui, Xiao, Gang, Wang, Shoujue
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 87
container_title
container_volume
creator Cao, Wenming
Hu, Jianhui
Xiao, Gang
Wang, Shoujue
description In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as “cognition” one class by one class, and it doesn’t influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.
doi_str_mv 10.1007/11427445_15
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882780</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-44778dfd0223db3ccafcf4bd989a72c632adbdd691881571fba5f41076d6fba83</originalsourceid><addsrcrecordid>eNpNkLtOxDAQRc1LIiyp-IE0FBQBj-34Ua5WPFZaQEJQW44dB0NIIjsrxN-T1VIwzR3pnJniInQB-BowFjcAjAjGKg3VATqjFcOUYC7UIcqAA5SUMnWEciXkjpFKAZXHKMMUk1IJRk9RntIHnocCn28zpJbj2AVrpjD0xeCLx203hfK7Ce371LjiqdnGGfghFusYUvHS2KHtw84-RyfedKnJ_3KB3u5uX1cP5eb5fr1absqRgJpKxoSQzjtMCHU1tdZ461ntlFRGEMspMa52jiuQEioBvjaVZ4AFd3zeJV2gy_3f0SRrOh9Nb0PSYwxfJv5o4FISIfHsXe29NKO-baKuh-EzacB6153-1x39Bc2yW0M</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Multi-weighted Neuron for Iris Recognition</title><source>Springer Books</source><creator>Cao, Wenming ; Hu, Jianhui ; Xiao, Gang ; Wang, Shoujue</creator><contributor>Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</contributor><creatorcontrib>Cao, Wenming ; Hu, Jianhui ; Xiao, Gang ; Wang, Shoujue ; Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</creatorcontrib><description>In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as “cognition” one class by one class, and it doesn’t influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540259138</identifier><identifier>ISBN: 3540259139</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320679</identifier><identifier>EISBN: 9783540320678</identifier><identifier>DOI: 10.1007/11427445_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Biometric Technology ; Computer science; control theory; systems ; Exact sciences and technology ; Iris Image ; Iris Recognition ; Iris Sample ; Learning and adaptive systems ; Weighted Neuron</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.87-92</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427445_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427445_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16882780$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiao-Feng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Cao, Wenming</creatorcontrib><creatorcontrib>Hu, Jianhui</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><creatorcontrib>Wang, Shoujue</creatorcontrib><title>Application of Multi-weighted Neuron for Iris Recognition</title><title>Advances in Neural Networks – ISNN 2005</title><description>In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as “cognition” one class by one class, and it doesn’t influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biometric Technology</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Iris Image</subject><subject>Iris Recognition</subject><subject>Iris Sample</subject><subject>Learning and adaptive systems</subject><subject>Weighted Neuron</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540259138</isbn><isbn>3540259139</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>3540320679</isbn><isbn>9783540320678</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkLtOxDAQRc1LIiyp-IE0FBQBj-34Ua5WPFZaQEJQW44dB0NIIjsrxN-T1VIwzR3pnJniInQB-BowFjcAjAjGKg3VATqjFcOUYC7UIcqAA5SUMnWEciXkjpFKAZXHKMMUk1IJRk9RntIHnocCn28zpJbj2AVrpjD0xeCLx203hfK7Ce371LjiqdnGGfghFusYUvHS2KHtw84-RyfedKnJ_3KB3u5uX1cP5eb5fr1absqRgJpKxoSQzjtMCHU1tdZ461ntlFRGEMspMa52jiuQEioBvjaVZ4AFd3zeJV2gy_3f0SRrOh9Nb0PSYwxfJv5o4FISIfHsXe29NKO-baKuh-EzacB6153-1x39Bc2yW0M</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Cao, Wenming</creator><creator>Hu, Jianhui</creator><creator>Xiao, Gang</creator><creator>Wang, Shoujue</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Application of Multi-weighted Neuron for Iris Recognition</title><author>Cao, Wenming ; Hu, Jianhui ; Xiao, Gang ; Wang, Shoujue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-44778dfd0223db3ccafcf4bd989a72c632adbdd691881571fba5f41076d6fba83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biometric Technology</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Iris Image</topic><topic>Iris Recognition</topic><topic>Iris Sample</topic><topic>Learning and adaptive systems</topic><topic>Weighted Neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wenming</creatorcontrib><creatorcontrib>Hu, Jianhui</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><creatorcontrib>Wang, Shoujue</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wenming</au><au>Hu, Jianhui</au><au>Xiao, Gang</au><au>Wang, Shoujue</au><au>Yi, Zhang</au><au>Liao, Xiao-Feng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Multi-weighted Neuron for Iris Recognition</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>87</spage><epage>92</epage><pages>87-92</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540259138</isbn><isbn>3540259139</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>3540320679</eisbn><eisbn>9783540320678</eisbn><abstract>In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as “cognition” one class by one class, and it doesn’t influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427445_15</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks – ISNN 2005, 2005, p.87-92
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16882780
source Springer Books
subjects Applied sciences
Artificial intelligence
Biometric Technology
Computer science
control theory
systems
Exact sciences and technology
Iris Image
Iris Recognition
Iris Sample
Learning and adaptive systems
Weighted Neuron
title Application of Multi-weighted Neuron for Iris Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Multi-weighted%20Neuron%20for%20Iris%20Recognition&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Cao,%20Wenming&rft.date=2005&rft.spage=87&rft.epage=92&rft.pages=87-92&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540259138&rft.isbn_list=3540259139&rft.isbn_list=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427445_15&rft_dat=%3Cpascalfrancis_sprin%3E16882780%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320679&rft.eisbn_list=9783540320678&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true