Intrusion Detection Based on Dynamic Self-organizing Map Neural Network Clustering

An approach to network intrusion detection is investigated, based on dynamic self-organizing maps (DSOM) neural network clustering. The basic idea of the method is to produce the cluster by DSOM. With the classified data instances, anomaly data clusters can be easily identified by normal cluster rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feng, Yong, Wu, Kaigui, Wu, Zhongfu, Xiong, Zhongyang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue
container_start_page 428
container_title
container_volume
creator Feng, Yong
Wu, Kaigui
Wu, Zhongfu
Xiong, Zhongyang
description An approach to network intrusion detection is investigated, based on dynamic self-organizing maps (DSOM) neural network clustering. The basic idea of the method is to produce the cluster by DSOM. With the classified data instances, anomaly data clusters can be easily identified by normal cluster ratio. And then the identified cluster can be used in real data detection. In the traditional clustering-based intrusion detection algorithms, clustering using a simple distance-based metric and detection based on the centers of clusters, which generally degrade detection accuracy and efficiency. Our approach based on DSOM clustering can settle these problems effectively. The experiment result shows that our approach can detect unknown intrusions efficiently in the real network connections.
doi_str_mv 10.1007/11427469_69
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882692</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-6587b7bc8b9aef1bfb2fb25bfe79bff0c321b3138b069c208cc66b6b1d94c7d3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JUnriB3LhwCHgtR07PkLLo1IBCXq3bNeuQtMkslOh8vU4KgdWK81qZrTaHYSuAN8CxuIOgBHBuFRcHqELWjBMCeayOEYj4AA5pUyeHARSSGDiFI0wxSSXgtFzNInxC6eiwBM7Qh_zpg-7WLVNNnO9s_0wPejoVtlA7Ru9rWz26Wqft2Gtm-qnatbZq-6yN7cLuk7Qf7dhk03rXexdSOolOvO6jm7yh2O0fHpcTl_yxfvzfHq_yDsCss95UQojjC2N1M6D8YakLox3QhrvsaUEDAVamvSeJbi0lnPDDawks2JFx-j6sLbT0eraB93YKqouVFsd9gp4WRIuSfLdHHyxG65zQZm23UQFWA2Bqn-B0l-ZymPj</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intrusion Detection Based on Dynamic Self-organizing Map Neural Network Clustering</title><source>Springer Books</source><creator>Feng, Yong ; Wu, Kaigui ; Wu, Zhongfu ; Xiong, Zhongyang</creator><contributor>Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</contributor><creatorcontrib>Feng, Yong ; Wu, Kaigui ; Wu, Zhongfu ; Xiong, Zhongyang ; Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</creatorcontrib><description>An approach to network intrusion detection is investigated, based on dynamic self-organizing maps (DSOM) neural network clustering. The basic idea of the method is to produce the cluster by DSOM. With the classified data instances, anomaly data clusters can be easily identified by normal cluster ratio. And then the identified cluster can be used in real data detection. In the traditional clustering-based intrusion detection algorithms, clustering using a simple distance-based metric and detection based on the centers of clusters, which generally degrade detection accuracy and efficiency. Our approach based on DSOM clustering can settle these problems effectively. The experiment result shows that our approach can detect unknown intrusions efficiently in the real network connections.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540259147</identifier><identifier>ISBN: 9783540259145</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320695</identifier><identifier>EISBN: 9783540320692</identifier><identifier>DOI: 10.1007/11427469_69</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.428-433</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427469_69$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427469_69$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16882692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiao-Feng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Feng, Yong</creatorcontrib><creatorcontrib>Wu, Kaigui</creatorcontrib><creatorcontrib>Wu, Zhongfu</creatorcontrib><creatorcontrib>Xiong, Zhongyang</creatorcontrib><title>Intrusion Detection Based on Dynamic Self-organizing Map Neural Network Clustering</title><title>Advances in Neural Networks – ISNN 2005</title><description>An approach to network intrusion detection is investigated, based on dynamic self-organizing maps (DSOM) neural network clustering. The basic idea of the method is to produce the cluster by DSOM. With the classified data instances, anomaly data clusters can be easily identified by normal cluster ratio. And then the identified cluster can be used in real data detection. In the traditional clustering-based intrusion detection algorithms, clustering using a simple distance-based metric and detection based on the centers of clusters, which generally degrade detection accuracy and efficiency. Our approach based on DSOM clustering can settle these problems effectively. The experiment result shows that our approach can detect unknown intrusions efficiently in the real network connections.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>3540320695</isbn><isbn>9783540320692</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUMtOwzAQNC-JUnriB3LhwCHgtR07PkLLo1IBCXq3bNeuQtMkslOh8vU4KgdWK81qZrTaHYSuAN8CxuIOgBHBuFRcHqELWjBMCeayOEYj4AA5pUyeHARSSGDiFI0wxSSXgtFzNInxC6eiwBM7Qh_zpg-7WLVNNnO9s_0wPejoVtlA7Ru9rWz26Wqft2Gtm-qnatbZq-6yN7cLuk7Qf7dhk03rXexdSOolOvO6jm7yh2O0fHpcTl_yxfvzfHq_yDsCss95UQojjC2N1M6D8YakLox3QhrvsaUEDAVamvSeJbi0lnPDDawks2JFx-j6sLbT0eraB93YKqouVFsd9gp4WRIuSfLdHHyxG65zQZm23UQFWA2Bqn-B0l-ZymPj</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Feng, Yong</creator><creator>Wu, Kaigui</creator><creator>Wu, Zhongfu</creator><creator>Xiong, Zhongyang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Intrusion Detection Based on Dynamic Self-organizing Map Neural Network Clustering</title><author>Feng, Yong ; Wu, Kaigui ; Wu, Zhongfu ; Xiong, Zhongyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-6587b7bc8b9aef1bfb2fb25bfe79bff0c321b3138b069c208cc66b6b1d94c7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yong</creatorcontrib><creatorcontrib>Wu, Kaigui</creatorcontrib><creatorcontrib>Wu, Zhongfu</creatorcontrib><creatorcontrib>Xiong, Zhongyang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yong</au><au>Wu, Kaigui</au><au>Wu, Zhongfu</au><au>Xiong, Zhongyang</au><au>Yi, Zhang</au><au>Liao, Xiao-Feng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intrusion Detection Based on Dynamic Self-organizing Map Neural Network Clustering</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>428</spage><epage>433</epage><pages>428-433</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>3540320695</eisbn><eisbn>9783540320692</eisbn><abstract>An approach to network intrusion detection is investigated, based on dynamic self-organizing maps (DSOM) neural network clustering. The basic idea of the method is to produce the cluster by DSOM. With the classified data instances, anomaly data clusters can be easily identified by normal cluster ratio. And then the identified cluster can be used in real data detection. In the traditional clustering-based intrusion detection algorithms, clustering using a simple distance-based metric and detection based on the centers of clusters, which generally degrade detection accuracy and efficiency. Our approach based on DSOM clustering can settle these problems effectively. The experiment result shows that our approach can detect unknown intrusions efficiently in the real network connections.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427469_69</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks – ISNN 2005, 2005, p.428-433
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16882692
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
title Intrusion Detection Based on Dynamic Self-organizing Map Neural Network Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intrusion%20Detection%20Based%20on%20Dynamic%20Self-organizing%20Map%20Neural%20Network%20Clustering&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Feng,%20Yong&rft.date=2005&rft.spage=428&rft.epage=433&rft.pages=428-433&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540259147&rft.isbn_list=9783540259145&rft.isbn_list=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427469_69&rft_dat=%3Cpascalfrancis_sprin%3E16882692%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320695&rft.eisbn_list=9783540320692&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true