Building an Intrusion Detection System Based on Support Vector Machine and Genetic Algorithm

Host-based Intrusion Detection System (IDS) utilizes the log files as the data source and is limited by the content of the log files. If the log files were tampered, the IDS cannot accurately detect illegal behaviors. Therefore, the proposed IDS for this paper will create its own data source file. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Rongchang, Chen, Jeanne, Chen, Tungshou, Hsieh, Chunhung, Chen, Teyu, Wu, Kaiyang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue
container_start_page 409
container_title
container_volume
creator Chen, Rongchang
Chen, Jeanne
Chen, Tungshou
Hsieh, Chunhung
Chen, Teyu
Wu, Kaiyang
description Host-based Intrusion Detection System (IDS) utilizes the log files as the data source and is limited by the content of the log files. If the log files were tampered, the IDS cannot accurately detect illegal behaviors. Therefore, the proposed IDS for this paper will create its own data source file. The system is controlled by the Client program and Server program. The client program is responsible for recording a user’s behavior in the data source file. The data source file is then transmitted to the server program, which will send it to SVM to be analyzed. The analyzed result will then be transmitted back to the client program. The client program will then decide on the course of actions to take based on the analyzed result. Also, the genetic algorithm is used to optimize information to extract from the data source file so that detection time can be optimized.
doi_str_mv 10.1007/11427469_66
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16882687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16882687</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-f2abd5c807d21574bc6f281e9949c22418ea27914ec893ee2042442dade230653</originalsourceid><addsrcrecordid>eNpNkDtPwzAQx81LopROfAEvDAwB--zY8dgHlEpFDDwmpMh1nNaQOpHtDv32pCoDt9zj97-T7o_QDSX3lBD5QCkHyYUqhThBVyznhAERKj9FAyoozRjj6uwIIFeUy3M0IIxApiRnl2gU4zfpg1HRTwfoa7JzTeX8GmuPFz6FXXStxzObrEmH6m0fk93iiY62wod-13VtSPiz523AL9psnLf9doXn1tvkDB436za4tNleo4taN9GO_vIQfTw9vk-fs-XrfDEdL7MOqEpZDXpV5aYgsgKaS74yooaCWqW4MgCcFlaD7H-xplDMWiAcOIdKVxYYETkbotvj3U5Ho5s6aG9cLLvgtjrsSyqKAkQhe93dURd75Nc2lKu2_YklJeXB2_Kft-wXnEtl-w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Building an Intrusion Detection System Based on Support Vector Machine and Genetic Algorithm</title><source>Springer Books</source><creator>Chen, Rongchang ; Chen, Jeanne ; Chen, Tungshou ; Hsieh, Chunhung ; Chen, Teyu ; Wu, Kaiyang</creator><contributor>Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</contributor><creatorcontrib>Chen, Rongchang ; Chen, Jeanne ; Chen, Tungshou ; Hsieh, Chunhung ; Chen, Teyu ; Wu, Kaiyang ; Yi, Zhang ; Liao, Xiao-Feng ; Wang, Jun</creatorcontrib><description>Host-based Intrusion Detection System (IDS) utilizes the log files as the data source and is limited by the content of the log files. If the log files were tampered, the IDS cannot accurately detect illegal behaviors. Therefore, the proposed IDS for this paper will create its own data source file. The system is controlled by the Client program and Server program. The client program is responsible for recording a user’s behavior in the data source file. The data source file is then transmitted to the server program, which will send it to SVM to be analyzed. The analyzed result will then be transmitted back to the client program. The client program will then decide on the course of actions to take based on the analyzed result. Also, the genetic algorithm is used to optimize information to extract from the data source file so that detection time can be optimized.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540259147</identifier><identifier>ISBN: 9783540259145</identifier><identifier>ISBN: 9783540259121</identifier><identifier>ISBN: 3540259120</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320695</identifier><identifier>EISBN: 9783540320692</identifier><identifier>DOI: 10.1007/11427469_66</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems</subject><ispartof>Advances in Neural Networks – ISNN 2005, 2005, p.409-414</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11427469_66$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11427469_66$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16882687$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yi, Zhang</contributor><contributor>Liao, Xiao-Feng</contributor><contributor>Wang, Jun</contributor><creatorcontrib>Chen, Rongchang</creatorcontrib><creatorcontrib>Chen, Jeanne</creatorcontrib><creatorcontrib>Chen, Tungshou</creatorcontrib><creatorcontrib>Hsieh, Chunhung</creatorcontrib><creatorcontrib>Chen, Teyu</creatorcontrib><creatorcontrib>Wu, Kaiyang</creatorcontrib><title>Building an Intrusion Detection System Based on Support Vector Machine and Genetic Algorithm</title><title>Advances in Neural Networks – ISNN 2005</title><description>Host-based Intrusion Detection System (IDS) utilizes the log files as the data source and is limited by the content of the log files. If the log files were tampered, the IDS cannot accurately detect illegal behaviors. Therefore, the proposed IDS for this paper will create its own data source file. The system is controlled by the Client program and Server program. The client program is responsible for recording a user’s behavior in the data source file. The data source file is then transmitted to the server program, which will send it to SVM to be analyzed. The analyzed result will then be transmitted back to the client program. The client program will then decide on the course of actions to take based on the analyzed result. Also, the genetic algorithm is used to optimize information to extract from the data source file so that detection time can be optimized.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><isbn>3540320695</isbn><isbn>9783540320692</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAQx81LopROfAEvDAwB--zY8dgHlEpFDDwmpMh1nNaQOpHtDv32pCoDt9zj97-T7o_QDSX3lBD5QCkHyYUqhThBVyznhAERKj9FAyoozRjj6uwIIFeUy3M0IIxApiRnl2gU4zfpg1HRTwfoa7JzTeX8GmuPFz6FXXStxzObrEmH6m0fk93iiY62wod-13VtSPiz523AL9psnLf9doXn1tvkDB436za4tNleo4taN9GO_vIQfTw9vk-fs-XrfDEdL7MOqEpZDXpV5aYgsgKaS74yooaCWqW4MgCcFlaD7H-xplDMWiAcOIdKVxYYETkbotvj3U5Ho5s6aG9cLLvgtjrsSyqKAkQhe93dURd75Nc2lKu2_YklJeXB2_Kft-wXnEtl-w</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Chen, Rongchang</creator><creator>Chen, Jeanne</creator><creator>Chen, Tungshou</creator><creator>Hsieh, Chunhung</creator><creator>Chen, Teyu</creator><creator>Wu, Kaiyang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Building an Intrusion Detection System Based on Support Vector Machine and Genetic Algorithm</title><author>Chen, Rongchang ; Chen, Jeanne ; Chen, Tungshou ; Hsieh, Chunhung ; Chen, Teyu ; Wu, Kaiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-f2abd5c807d21574bc6f281e9949c22418ea27914ec893ee2042442dade230653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rongchang</creatorcontrib><creatorcontrib>Chen, Jeanne</creatorcontrib><creatorcontrib>Chen, Tungshou</creatorcontrib><creatorcontrib>Hsieh, Chunhung</creatorcontrib><creatorcontrib>Chen, Teyu</creatorcontrib><creatorcontrib>Wu, Kaiyang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rongchang</au><au>Chen, Jeanne</au><au>Chen, Tungshou</au><au>Hsieh, Chunhung</au><au>Chen, Teyu</au><au>Wu, Kaiyang</au><au>Yi, Zhang</au><au>Liao, Xiao-Feng</au><au>Wang, Jun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Building an Intrusion Detection System Based on Support Vector Machine and Genetic Algorithm</atitle><btitle>Advances in Neural Networks – ISNN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>409</spage><epage>414</epage><pages>409-414</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540259147</isbn><isbn>9783540259145</isbn><isbn>9783540259121</isbn><isbn>3540259120</isbn><eisbn>3540320695</eisbn><eisbn>9783540320692</eisbn><abstract>Host-based Intrusion Detection System (IDS) utilizes the log files as the data source and is limited by the content of the log files. If the log files were tampered, the IDS cannot accurately detect illegal behaviors. Therefore, the proposed IDS for this paper will create its own data source file. The system is controlled by the Client program and Server program. The client program is responsible for recording a user’s behavior in the data source file. The data source file is then transmitted to the server program, which will send it to SVM to be analyzed. The analyzed result will then be transmitted back to the client program. The client program will then decide on the course of actions to take based on the analyzed result. Also, the genetic algorithm is used to optimize information to extract from the data source file so that detection time can be optimized.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11427469_66</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Neural Networks – ISNN 2005, 2005, p.409-414
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16882687
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
title Building an Intrusion Detection System Based on Support Vector Machine and Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Building%20an%20Intrusion%20Detection%20System%20Based%20on%20Support%20Vector%20Machine%20and%20Genetic%20Algorithm&rft.btitle=Advances%20in%20Neural%20Networks%20%E2%80%93%20ISNN%202005&rft.au=Chen,%20Rongchang&rft.date=2005&rft.spage=409&rft.epage=414&rft.pages=409-414&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540259147&rft.isbn_list=9783540259145&rft.isbn_list=9783540259121&rft.isbn_list=3540259120&rft_id=info:doi/10.1007/11427469_66&rft_dat=%3Cpascalfrancis_sprin%3E16882687%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320695&rft.eisbn_list=9783540320692&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true