A novel design methodology for reconfigurable frequency selective surfaces using genetic algorithms

In this paper, a new reconfigurable frequency selective surface (RFSS) design concept is introduced. A grid of simple metallic patches interconnected by a matrix of switches is proposed as the unit cell of an RFSS. The switches are independently addressable and provide significant transmission and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2005-04, Vol.53 (4), p.1390-1400
Hauptverfasser: Bossard, J.A., Werner, D.H., Mayer, T.S., Drupp, R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new reconfigurable frequency selective surface (RFSS) design concept is introduced. A grid of simple metallic patches interconnected by a matrix of switches is proposed as the unit cell of an RFSS. The switches are independently addressable and provide significant transmission and reflection flexibility over a large range of frequencies. This flexibility is exploited by optimizing the switch settings using a genetic algorithm to produce a desired frequency response. The versatility of the design technique is demonstrated by presenting several examples of genetically optimized RFSS. The first example to be considered is a linearly polarized FSS that can be reconfigured for either single-, dual-, or tri-band operation. An RFSS design is also introduced that can be optimized to have a frequency response that is polarization independent in one state (i.e., for one combination of switch settings) and polarization dependent in another state.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2005.844439