Convolutional codes using finite-field wavelets: time-varying codes and more

This paper introduces a procedure for constructing convolutional codes using finite-field wavelets. This provides novel insight into the study of convolutional codes and permits the design of the new convolutional codes that is not possible by conventional methods. Exploiting algebraic properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-05, Vol.53 (5), p.1881-1896
Hauptverfasser: Fekri, F., Sartipi, M., Mersereau, R.M., Schafer, R.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1896
container_issue 5
container_start_page 1881
container_title IEEE transactions on signal processing
container_volume 53
creator Fekri, F.
Sartipi, M.
Mersereau, R.M.
Schafer, R.W.
description This paper introduces a procedure for constructing convolutional codes using finite-field wavelets. This provides novel insight into the study of convolutional codes and permits the design of the new convolutional codes that is not possible by conventional methods. Exploiting algebraic properties of the wavelet codes, we show that a rate K/L wavelet convolutional encoder is a basic encoder that is noncatastrophic. In addition, we prove that any rate 1/L wavelet convolutional encoder is minimal-basic and that every L-band orthogonal wavelet system generates a rate 1/L self-orthogonal code. As an application of wavelet convolutional codes, we construct time-varying convolutional codes. These codes have unique trellis structures that result in fast and low computational complexity decoding algorithms. As examples, we present some time-varying wavelet convolutional codes that can be decoded faster than comparable time-invariant convolutional codes. We construct 16and 32-state time-varying wavelet convolutional codes with minimum-free distances of seven and eight, respectively. These codes have the same minimum-free distance as the best time-invariant codes of the same rate and state complexity, but they can be decoded almost twice as fast. We show that a 32-state time-varying wavelet convolutional code is superior to the Lauer code in performance while having almost the same decoding complexity. Although the 32-state wavelet code is inferior to the 16-state Golay convolutional code as far as computational complexity, it outperforms this code in the performance. We also prove that orthogonal filterbanks generate self-dual time-varying codes. We give a design for doubly even self-dual time-varying convolutional codes by imposing some constraints on the filters that define the L-band orthogonal wavelets. As another application of wavelet convolutional codes, we propose a new scheme for generating rate-adaptive codes. These codes have the property that multiple rates of the code can be decoded on one trellis and its subtrellises.
doi_str_mv 10.1109/TSP.2005.845484
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_16694319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1420826</ieee_id><sourcerecordid>28011581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-d88e3ecdfdada379dd8fb1cdacb91c6398e7599abf14093803ecb7c203b397c03</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCs7p2YOXIqinbnlN2ibeZPgLBgpO8FbS5FUy2mY27cT_3pQOBh485UE-73t43yA4BzIDIGK-enudxYQkM84SxtlBMAHBICIsSw_9TBIaJTz7OA5OnFsTAoyJdBIsF7bZ2qrvjG1kFSqr0YW9M81nWJrGdBiVBisdfsstVti527AzNUZb2f4MZvSy0WFtWzwNjkpZOTzbvdPg_eF-tXiKli-Pz4u7ZaQohy7SnCNFpUsttaSZ0JqXBSgtVSFApVRwzBIhZFECI4Jy4nGRqZjQgopMEToNbsbcTWu_enRdXhunsKpkg7Z3ORdpTARA5uX1vzLmBCDh4OHlH7i2fetP4tNSAdSHDWnzEanWOtdimW9aU_tT5EDyoYTcl5APJeRjCX7jahcrnZJV2cpGGbdfS1PBKAjvLkZnEHH_zWLC45T-AtK8kC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869131177</pqid></control><display><type>article</type><title>Convolutional codes using finite-field wavelets: time-varying codes and more</title><source>IEEE Electronic Library (IEL)</source><creator>Fekri, F. ; Sartipi, M. ; Mersereau, R.M. ; Schafer, R.W.</creator><creatorcontrib>Fekri, F. ; Sartipi, M. ; Mersereau, R.M. ; Schafer, R.W.</creatorcontrib><description>This paper introduces a procedure for constructing convolutional codes using finite-field wavelets. This provides novel insight into the study of convolutional codes and permits the design of the new convolutional codes that is not possible by conventional methods. Exploiting algebraic properties of the wavelet codes, we show that a rate K/L wavelet convolutional encoder is a basic encoder that is noncatastrophic. In addition, we prove that any rate 1/L wavelet convolutional encoder is minimal-basic and that every L-band orthogonal wavelet system generates a rate 1/L self-orthogonal code. As an application of wavelet convolutional codes, we construct time-varying convolutional codes. These codes have unique trellis structures that result in fast and low computational complexity decoding algorithms. As examples, we present some time-varying wavelet convolutional codes that can be decoded faster than comparable time-invariant convolutional codes. We construct 16and 32-state time-varying wavelet convolutional codes with minimum-free distances of seven and eight, respectively. These codes have the same minimum-free distance as the best time-invariant codes of the same rate and state complexity, but they can be decoded almost twice as fast. We show that a 32-state time-varying wavelet convolutional code is superior to the Lauer code in performance while having almost the same decoding complexity. Although the 32-state wavelet code is inferior to the 16-state Golay convolutional code as far as computational complexity, it outperforms this code in the performance. We also prove that orthogonal filterbanks generate self-dual time-varying codes. We give a design for doubly even self-dual time-varying convolutional codes by imposing some constraints on the filters that define the L-band orthogonal wavelets. As another application of wavelet convolutional codes, we propose a new scheme for generating rate-adaptive codes. These codes have the property that multiple rates of the code can be decoded on one trellis and its subtrellises.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2005.845484</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bipartite trellis ; Coders ; Codes ; Coding, codes ; Complexity ; Computation ; Computational complexity ; Construction ; Convolutional codes ; Decoding ; Design engineering ; Detection, estimation, filtering, equalization, prediction ; Encoders ; Exact sciences and technology ; Filters ; finite-field wavelets ; Frequency ; Galois fields ; Information, signal and communications theory ; rate-adaptive codes ; Signal and communications theory ; Signal representations ; Signal, noise ; Telecommunications and information theory ; time-varying convolutional codes ; Video compression ; Wavelet ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2005-05, Vol.53 (5), p.1881-1896</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-d88e3ecdfdada379dd8fb1cdacb91c6398e7599abf14093803ecb7c203b397c03</citedby><cites>FETCH-LOGICAL-c381t-d88e3ecdfdada379dd8fb1cdacb91c6398e7599abf14093803ecb7c203b397c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1420826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1420826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16694319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fekri, F.</creatorcontrib><creatorcontrib>Sartipi, M.</creatorcontrib><creatorcontrib>Mersereau, R.M.</creatorcontrib><creatorcontrib>Schafer, R.W.</creatorcontrib><title>Convolutional codes using finite-field wavelets: time-varying codes and more</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper introduces a procedure for constructing convolutional codes using finite-field wavelets. This provides novel insight into the study of convolutional codes and permits the design of the new convolutional codes that is not possible by conventional methods. Exploiting algebraic properties of the wavelet codes, we show that a rate K/L wavelet convolutional encoder is a basic encoder that is noncatastrophic. In addition, we prove that any rate 1/L wavelet convolutional encoder is minimal-basic and that every L-band orthogonal wavelet system generates a rate 1/L self-orthogonal code. As an application of wavelet convolutional codes, we construct time-varying convolutional codes. These codes have unique trellis structures that result in fast and low computational complexity decoding algorithms. As examples, we present some time-varying wavelet convolutional codes that can be decoded faster than comparable time-invariant convolutional codes. We construct 16and 32-state time-varying wavelet convolutional codes with minimum-free distances of seven and eight, respectively. These codes have the same minimum-free distance as the best time-invariant codes of the same rate and state complexity, but they can be decoded almost twice as fast. We show that a 32-state time-varying wavelet convolutional code is superior to the Lauer code in performance while having almost the same decoding complexity. Although the 32-state wavelet code is inferior to the 16-state Golay convolutional code as far as computational complexity, it outperforms this code in the performance. We also prove that orthogonal filterbanks generate self-dual time-varying codes. We give a design for doubly even self-dual time-varying convolutional codes by imposing some constraints on the filters that define the L-band orthogonal wavelets. As another application of wavelet convolutional codes, we propose a new scheme for generating rate-adaptive codes. These codes have the property that multiple rates of the code can be decoded on one trellis and its subtrellises.</description><subject>Applied sciences</subject><subject>Bipartite trellis</subject><subject>Coders</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Construction</subject><subject>Convolutional codes</subject><subject>Decoding</subject><subject>Design engineering</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Encoders</subject><subject>Exact sciences and technology</subject><subject>Filters</subject><subject>finite-field wavelets</subject><subject>Frequency</subject><subject>Galois fields</subject><subject>Information, signal and communications theory</subject><subject>rate-adaptive codes</subject><subject>Signal and communications theory</subject><subject>Signal representations</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>time-varying convolutional codes</subject><subject>Video compression</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9LwzAUB_AiCs7p2YOXIqinbnlN2ibeZPgLBgpO8FbS5FUy2mY27cT_3pQOBh485UE-73t43yA4BzIDIGK-enudxYQkM84SxtlBMAHBICIsSw_9TBIaJTz7OA5OnFsTAoyJdBIsF7bZ2qrvjG1kFSqr0YW9M81nWJrGdBiVBisdfsstVti527AzNUZb2f4MZvSy0WFtWzwNjkpZOTzbvdPg_eF-tXiKli-Pz4u7ZaQohy7SnCNFpUsttaSZ0JqXBSgtVSFApVRwzBIhZFECI4Jy4nGRqZjQgopMEToNbsbcTWu_enRdXhunsKpkg7Z3ORdpTARA5uX1vzLmBCDh4OHlH7i2fetP4tNSAdSHDWnzEanWOtdimW9aU_tT5EDyoYTcl5APJeRjCX7jahcrnZJV2cpGGbdfS1PBKAjvLkZnEHH_zWLC45T-AtK8kC0</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Fekri, F.</creator><creator>Sartipi, M.</creator><creator>Mersereau, R.M.</creator><creator>Schafer, R.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050501</creationdate><title>Convolutional codes using finite-field wavelets: time-varying codes and more</title><author>Fekri, F. ; Sartipi, M. ; Mersereau, R.M. ; Schafer, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-d88e3ecdfdada379dd8fb1cdacb91c6398e7599abf14093803ecb7c203b397c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Bipartite trellis</topic><topic>Coders</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Construction</topic><topic>Convolutional codes</topic><topic>Decoding</topic><topic>Design engineering</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Encoders</topic><topic>Exact sciences and technology</topic><topic>Filters</topic><topic>finite-field wavelets</topic><topic>Frequency</topic><topic>Galois fields</topic><topic>Information, signal and communications theory</topic><topic>rate-adaptive codes</topic><topic>Signal and communications theory</topic><topic>Signal representations</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>time-varying convolutional codes</topic><topic>Video compression</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fekri, F.</creatorcontrib><creatorcontrib>Sartipi, M.</creatorcontrib><creatorcontrib>Mersereau, R.M.</creatorcontrib><creatorcontrib>Schafer, R.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fekri, F.</au><au>Sartipi, M.</au><au>Mersereau, R.M.</au><au>Schafer, R.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional codes using finite-field wavelets: time-varying codes and more</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>53</volume><issue>5</issue><spage>1881</spage><epage>1896</epage><pages>1881-1896</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper introduces a procedure for constructing convolutional codes using finite-field wavelets. This provides novel insight into the study of convolutional codes and permits the design of the new convolutional codes that is not possible by conventional methods. Exploiting algebraic properties of the wavelet codes, we show that a rate K/L wavelet convolutional encoder is a basic encoder that is noncatastrophic. In addition, we prove that any rate 1/L wavelet convolutional encoder is minimal-basic and that every L-band orthogonal wavelet system generates a rate 1/L self-orthogonal code. As an application of wavelet convolutional codes, we construct time-varying convolutional codes. These codes have unique trellis structures that result in fast and low computational complexity decoding algorithms. As examples, we present some time-varying wavelet convolutional codes that can be decoded faster than comparable time-invariant convolutional codes. We construct 16and 32-state time-varying wavelet convolutional codes with minimum-free distances of seven and eight, respectively. These codes have the same minimum-free distance as the best time-invariant codes of the same rate and state complexity, but they can be decoded almost twice as fast. We show that a 32-state time-varying wavelet convolutional code is superior to the Lauer code in performance while having almost the same decoding complexity. Although the 32-state wavelet code is inferior to the 16-state Golay convolutional code as far as computational complexity, it outperforms this code in the performance. We also prove that orthogonal filterbanks generate self-dual time-varying codes. We give a design for doubly even self-dual time-varying convolutional codes by imposing some constraints on the filters that define the L-band orthogonal wavelets. As another application of wavelet convolutional codes, we propose a new scheme for generating rate-adaptive codes. These codes have the property that multiple rates of the code can be decoded on one trellis and its subtrellises.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2005.845484</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2005-05, Vol.53 (5), p.1881-1896
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_16694319
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bipartite trellis
Coders
Codes
Coding, codes
Complexity
Computation
Computational complexity
Construction
Convolutional codes
Decoding
Design engineering
Detection, estimation, filtering, equalization, prediction
Encoders
Exact sciences and technology
Filters
finite-field wavelets
Frequency
Galois fields
Information, signal and communications theory
rate-adaptive codes
Signal and communications theory
Signal representations
Signal, noise
Telecommunications and information theory
time-varying convolutional codes
Video compression
Wavelet
Wavelet analysis
Wavelet transforms
title Convolutional codes using finite-field wavelets: time-varying codes and more
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20codes%20using%20finite-field%20wavelets:%20time-varying%20codes%20and%20more&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fekri,%20F.&rft.date=2005-05-01&rft.volume=53&rft.issue=5&rft.spage=1881&rft.epage=1896&rft.pages=1881-1896&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2005.845484&rft_dat=%3Cproquest_RIE%3E28011581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869131177&rft_id=info:pmid/&rft_ieee_id=1420826&rfr_iscdi=true