Armlets and balanced multiwavelets: flipping filter construction

In the scalar-valued setting, it is well-known that the two-scale sequences {q/sub k/} of Daubechies orthogonal wavelets can be given explicitly by the two-scale sequences {p/sub k/} of their corresponding orthogonal scaling functions, such as q/sub k/=(-1)/sup k/p/sub 1-k/. However, due to the nonc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-05, Vol.53 (5), p.1754-1767
1. Verfasser: LIAN, Jian-Ao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1767
container_issue 5
container_start_page 1754
container_title IEEE transactions on signal processing
container_volume 53
creator LIAN, Jian-Ao
description In the scalar-valued setting, it is well-known that the two-scale sequences {q/sub k/} of Daubechies orthogonal wavelets can be given explicitly by the two-scale sequences {p/sub k/} of their corresponding orthogonal scaling functions, such as q/sub k/=(-1)/sup k/p/sub 1-k/. However, due to the noncommutativity of matrix multiplication, there is little such development in the multiwavelet literature to express the two-scale matrix sequence {Q/sub k/} of an orthogonal multiwavelet in terms of the two-scale matrix sequence {P/sub k/} of its corresponding scaling function vector. This paper, in part, is devoted to this study for the setting of orthogonal multiwavelets of dimension r=2. In particular, the two lowpass filters are flipping filters, whereas the two highpass filters are linear phase. These results will be applied to constructing both a family of the most recently introduced notion of armlet of order n and a family of n-balanced orthogonal multiwavelets.
doi_str_mv 10.1109/TSP.2005.845468
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_16694308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1420815</ieee_id><sourcerecordid>28062086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-821077a2b8139dc0ac7716113fd6b51cb53a3219a5e00adb61c09da622d427433</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpoOkm5x5yMYUmJ29mJFkfPWVZ0iYQSCAb6E3IshwUvPZWshP67yuzgYUeepqBeeZl5iHkC8ISEfTl5vFhSQGqpeIVF-oDOUbNsQQuxcfcQ8XKSslfn8jnlF4AkHMtjsnVKm47P6bC9k1R2872zjfFdurG8GZf_Tz6XrRd2O1C_1y0oRt9LNzQpzFObgxDf0KOWtslf_peF-Tpx_VmfVPe3f-8Xa_uSscUjqWiCFJaWitkunFgnZQoEFnbiLpCV1fMMoraVh7ANrVAB7qxgtKGU8kZW5CLfe4uDr8nn0azDcn5Ll_shykZpQVKLnP8gpz_l6QKBAUlMvj1H_BlmGKfvzBKaGSo6Axd7iEXh5Sib80uhq2NfwyCmcWbLN7M4s1efN749h5rk7NdG7PTkA5rQmjOYObO9lzw3h_GPN-GFfsLbZ-KUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869131826</pqid></control><display><type>article</type><title>Armlets and balanced multiwavelets: flipping filter construction</title><source>IEEE Electronic Library (IEL)</source><creator>LIAN, Jian-Ao</creator><creatorcontrib>LIAN, Jian-Ao</creatorcontrib><description>In the scalar-valued setting, it is well-known that the two-scale sequences {q/sub k/} of Daubechies orthogonal wavelets can be given explicitly by the two-scale sequences {p/sub k/} of their corresponding orthogonal scaling functions, such as q/sub k/=(-1)/sup k/p/sub 1-k/. However, due to the noncommutativity of matrix multiplication, there is little such development in the multiwavelet literature to express the two-scale matrix sequence {Q/sub k/} of an orthogonal multiwavelet in terms of the two-scale matrix sequence {P/sub k/} of its corresponding scaling function vector. This paper, in part, is devoted to this study for the setting of orthogonal multiwavelets of dimension r=2. In particular, the two lowpass filters are flipping filters, whereas the two highpass filters are linear phase. These results will be applied to constructing both a family of the most recently introduced notion of armlet of order n and a family of n-balanced orthogonal multiwavelets.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2005.845468</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Armlet ; balanced ; Balancing ; Construction ; Detection, estimation, filtering, equalization, prediction ; Digital filters ; Exact sciences and technology ; Finite impulse response filter ; Information, signal and communications theory ; Linear phase ; Mathematical analysis ; Mathematics ; Multiplication ; Multiresolution analysis ; multiwavelet ; Nonlinear filters ; orthogonality ; Polynomials ; scaling function vector ; Signal and communications theory ; Signal processing ; Signal, noise ; Symmetric matrices ; Telecommunications and information theory ; Vectors ; Vectors (mathematics) ; Wavelet ; Wavelet analysis</subject><ispartof>IEEE transactions on signal processing, 2005-05, Vol.53 (5), p.1754-1767</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-821077a2b8139dc0ac7716113fd6b51cb53a3219a5e00adb61c09da622d427433</citedby><cites>FETCH-LOGICAL-c381t-821077a2b8139dc0ac7716113fd6b51cb53a3219a5e00adb61c09da622d427433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1420815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1420815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16694308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIAN, Jian-Ao</creatorcontrib><title>Armlets and balanced multiwavelets: flipping filter construction</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In the scalar-valued setting, it is well-known that the two-scale sequences {q/sub k/} of Daubechies orthogonal wavelets can be given explicitly by the two-scale sequences {p/sub k/} of their corresponding orthogonal scaling functions, such as q/sub k/=(-1)/sup k/p/sub 1-k/. However, due to the noncommutativity of matrix multiplication, there is little such development in the multiwavelet literature to express the two-scale matrix sequence {Q/sub k/} of an orthogonal multiwavelet in terms of the two-scale matrix sequence {P/sub k/} of its corresponding scaling function vector. This paper, in part, is devoted to this study for the setting of orthogonal multiwavelets of dimension r=2. In particular, the two lowpass filters are flipping filters, whereas the two highpass filters are linear phase. These results will be applied to constructing both a family of the most recently introduced notion of armlet of order n and a family of n-balanced orthogonal multiwavelets.</description><subject>Applied sciences</subject><subject>Armlet</subject><subject>balanced</subject><subject>Balancing</subject><subject>Construction</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital filters</subject><subject>Exact sciences and technology</subject><subject>Finite impulse response filter</subject><subject>Information, signal and communications theory</subject><subject>Linear phase</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multiplication</subject><subject>Multiresolution analysis</subject><subject>multiwavelet</subject><subject>Nonlinear filters</subject><subject>orthogonality</subject><subject>Polynomials</subject><subject>scaling function vector</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Symmetric matrices</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1r3DAQhkVpoOkm5x5yMYUmJ29mJFkfPWVZ0iYQSCAb6E3IshwUvPZWshP67yuzgYUeepqBeeZl5iHkC8ISEfTl5vFhSQGqpeIVF-oDOUbNsQQuxcfcQ8XKSslfn8jnlF4AkHMtjsnVKm47P6bC9k1R2872zjfFdurG8GZf_Tz6XrRd2O1C_1y0oRt9LNzQpzFObgxDf0KOWtslf_peF-Tpx_VmfVPe3f-8Xa_uSscUjqWiCFJaWitkunFgnZQoEFnbiLpCV1fMMoraVh7ANrVAB7qxgtKGU8kZW5CLfe4uDr8nn0azDcn5Ll_shykZpQVKLnP8gpz_l6QKBAUlMvj1H_BlmGKfvzBKaGSo6Axd7iEXh5Sib80uhq2NfwyCmcWbLN7M4s1efN749h5rk7NdG7PTkA5rQmjOYObO9lzw3h_GPN-GFfsLbZ-KUQ</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>LIAN, Jian-Ao</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050501</creationdate><title>Armlets and balanced multiwavelets: flipping filter construction</title><author>LIAN, Jian-Ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-821077a2b8139dc0ac7716113fd6b51cb53a3219a5e00adb61c09da622d427433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Armlet</topic><topic>balanced</topic><topic>Balancing</topic><topic>Construction</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital filters</topic><topic>Exact sciences and technology</topic><topic>Finite impulse response filter</topic><topic>Information, signal and communications theory</topic><topic>Linear phase</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multiplication</topic><topic>Multiresolution analysis</topic><topic>multiwavelet</topic><topic>Nonlinear filters</topic><topic>orthogonality</topic><topic>Polynomials</topic><topic>scaling function vector</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Symmetric matrices</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIAN, Jian-Ao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIAN, Jian-Ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Armlets and balanced multiwavelets: flipping filter construction</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>53</volume><issue>5</issue><spage>1754</spage><epage>1767</epage><pages>1754-1767</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In the scalar-valued setting, it is well-known that the two-scale sequences {q/sub k/} of Daubechies orthogonal wavelets can be given explicitly by the two-scale sequences {p/sub k/} of their corresponding orthogonal scaling functions, such as q/sub k/=(-1)/sup k/p/sub 1-k/. However, due to the noncommutativity of matrix multiplication, there is little such development in the multiwavelet literature to express the two-scale matrix sequence {Q/sub k/} of an orthogonal multiwavelet in terms of the two-scale matrix sequence {P/sub k/} of its corresponding scaling function vector. This paper, in part, is devoted to this study for the setting of orthogonal multiwavelets of dimension r=2. In particular, the two lowpass filters are flipping filters, whereas the two highpass filters are linear phase. These results will be applied to constructing both a family of the most recently introduced notion of armlet of order n and a family of n-balanced orthogonal multiwavelets.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2005.845468</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2005-05, Vol.53 (5), p.1754-1767
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_16694308
source IEEE Electronic Library (IEL)
subjects Applied sciences
Armlet
balanced
Balancing
Construction
Detection, estimation, filtering, equalization, prediction
Digital filters
Exact sciences and technology
Finite impulse response filter
Information, signal and communications theory
Linear phase
Mathematical analysis
Mathematics
Multiplication
Multiresolution analysis
multiwavelet
Nonlinear filters
orthogonality
Polynomials
scaling function vector
Signal and communications theory
Signal processing
Signal, noise
Symmetric matrices
Telecommunications and information theory
Vectors
Vectors (mathematics)
Wavelet
Wavelet analysis
title Armlets and balanced multiwavelets: flipping filter construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Armlets%20and%20balanced%20multiwavelets:%20flipping%20filter%20construction&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=LIAN,%20Jian-Ao&rft.date=2005-05-01&rft.volume=53&rft.issue=5&rft.spage=1754&rft.epage=1767&rft.pages=1754-1767&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2005.845468&rft_dat=%3Cproquest_RIE%3E28062086%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869131826&rft_id=info:pmid/&rft_ieee_id=1420815&rfr_iscdi=true