SDODEL MOSFET for performance enhancement
A high-energy, low-dose implant of the source/drain (S/D) doping type is introduced after the gate definition step to form doped regions beneath and separated from the source and drain regions to fabricate source/drain on depletion layer (SDODEL) transistors. Under zero bias, these doped regions are...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2005-03, Vol.26 (3), p.205-207 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 3 |
container_start_page | 205 |
container_title | IEEE electron device letters |
container_volume | 26 |
creator | King Jien Chui Samudra, G.S. Yee-Chia Yeo Kheng-Chok Tee Leong, K.-W. Kian Meng Tee Benistant, F. Lap Chan |
description | A high-energy, low-dose implant of the source/drain (S/D) doping type is introduced after the gate definition step to form doped regions beneath and separated from the source and drain regions to fabricate source/drain on depletion layer (SDODEL) transistors. Under zero bias, these doped regions are fully depleted and the resulting transistor structure is termed an SDODEL MOSFET. The fully depleted regions act electrically like insulators, as in the case of silicon-on-insulator (SOI), to reduce junction capacitance. SDODEL MOSFETs with 0.16-μm gate length are fabricated by a slightly modified CMOS process without any additional masking steps. Subthreshold slope, simulated threshold voltage V T rolloff, and off-state leakage I/sub off/ are comparable with control devices. The junction capacitance in SDODEL MOSFETs is found to be reduced by more than 40% compared to conventional MOSFETs. Measurement of ring oscillator speeds demonstrates that SDODEL MOSFETs enable a 15% reduction in gate delay t/sub d/ for each inverter stage. SDODEL transistors provide a low-cost alternative to SOI for reduction of S/D junction capacitance. |
doi_str_mv | 10.1109/LED.2004.843215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_16555638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1397861</ieee_id><sourcerecordid>2543579931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b6fc5f61fa814042c8548ea2ccbdea69d6fce700c2806cc294b1735a1f5c50163</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrF24GQcTFtPfmNZmltPUBI11U1yFNE5zSmalJu_DfmzKFgquzuN85XD5CbhFGiFCOq9l0RAH4SHFGUZyRAQqhchCSnZMBFBxzhiAvyVWMawDkvOAD8rSYzqezKvuYL15mn5nvQrZ1IUVjWusy134fsnHt7ppceLOJ7uaYQ_KVGpO3vJq_vk-eq9wyAbt8Kb0VXqI3CjlwapXgyhlq7XLljCxX6e4KAEsVSGtpyZdYMGHQCysAJRuSx353G7qfvYs73dTRus3GtK7bR61KSQFpyRJ5_49cd_vQpud0iRQKkFIkaNxDNnQxBuf1NtSNCb8aQR_E6SROH8TpXlxqPBxnTbRm40MyUMdTTQqRnKrE3fVc7Zw7nVlZKInsD6m6cvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912070665</pqid></control><display><type>article</type><title>SDODEL MOSFET for performance enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>King Jien Chui ; Samudra, G.S. ; Yee-Chia Yeo ; Kheng-Chok Tee ; Leong, K.-W. ; Kian Meng Tee ; Benistant, F. ; Lap Chan</creator><creatorcontrib>King Jien Chui ; Samudra, G.S. ; Yee-Chia Yeo ; Kheng-Chok Tee ; Leong, K.-W. ; Kian Meng Tee ; Benistant, F. ; Lap Chan</creatorcontrib><description>A high-energy, low-dose implant of the source/drain (S/D) doping type is introduced after the gate definition step to form doped regions beneath and separated from the source and drain regions to fabricate source/drain on depletion layer (SDODEL) transistors. Under zero bias, these doped regions are fully depleted and the resulting transistor structure is termed an SDODEL MOSFET. The fully depleted regions act electrically like insulators, as in the case of silicon-on-insulator (SOI), to reduce junction capacitance. SDODEL MOSFETs with 0.16-μm gate length are fabricated by a slightly modified CMOS process without any additional masking steps. Subthreshold slope, simulated threshold voltage V T rolloff, and off-state leakage I/sub off/ are comparable with control devices. The junction capacitance in SDODEL MOSFETs is found to be reduced by more than 40% compared to conventional MOSFETs. Measurement of ring oscillator speeds demonstrates that SDODEL MOSFETs enable a 15% reduction in gate delay t/sub d/ for each inverter stage. SDODEL transistors provide a low-cost alternative to SOI for reduction of S/D junction capacitance.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2004.843215</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Circuit properties ; CMOS process ; Depletion ; Design. Technologies. Operation analysis. Testing ; Dielectrics and electrical insulation ; Doping ; Drains ; Electric, optical and optoelectronic circuits ; Electrical junctions ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Gates ; Implants ; Integrated circuits ; Junction capacitance ; MOSFET ; MOSFET circuits ; MOSFETs ; Oscillators, resonators, synthetizers ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Silicon on insulator technology ; Threshold voltage ; Transistors ; Velocity measurement ; Voltage control</subject><ispartof>IEEE electron device letters, 2005-03, Vol.26 (3), p.205-207</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b6fc5f61fa814042c8548ea2ccbdea69d6fce700c2806cc294b1735a1f5c50163</citedby><cites>FETCH-LOGICAL-c350t-b6fc5f61fa814042c8548ea2ccbdea69d6fce700c2806cc294b1735a1f5c50163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1397861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1397861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16555638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>King Jien Chui</creatorcontrib><creatorcontrib>Samudra, G.S.</creatorcontrib><creatorcontrib>Yee-Chia Yeo</creatorcontrib><creatorcontrib>Kheng-Chok Tee</creatorcontrib><creatorcontrib>Leong, K.-W.</creatorcontrib><creatorcontrib>Kian Meng Tee</creatorcontrib><creatorcontrib>Benistant, F.</creatorcontrib><creatorcontrib>Lap Chan</creatorcontrib><title>SDODEL MOSFET for performance enhancement</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>A high-energy, low-dose implant of the source/drain (S/D) doping type is introduced after the gate definition step to form doped regions beneath and separated from the source and drain regions to fabricate source/drain on depletion layer (SDODEL) transistors. Under zero bias, these doped regions are fully depleted and the resulting transistor structure is termed an SDODEL MOSFET. The fully depleted regions act electrically like insulators, as in the case of silicon-on-insulator (SOI), to reduce junction capacitance. SDODEL MOSFETs with 0.16-μm gate length are fabricated by a slightly modified CMOS process without any additional masking steps. Subthreshold slope, simulated threshold voltage V T rolloff, and off-state leakage I/sub off/ are comparable with control devices. The junction capacitance in SDODEL MOSFETs is found to be reduced by more than 40% compared to conventional MOSFETs. Measurement of ring oscillator speeds demonstrates that SDODEL MOSFETs enable a 15% reduction in gate delay t/sub d/ for each inverter stage. SDODEL transistors provide a low-cost alternative to SOI for reduction of S/D junction capacitance.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Circuit properties</subject><subject>CMOS process</subject><subject>Depletion</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectrics and electrical insulation</subject><subject>Doping</subject><subject>Drains</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical junctions</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Implants</subject><subject>Integrated circuits</subject><subject>Junction capacitance</subject><subject>MOSFET</subject><subject>MOSFET circuits</subject><subject>MOSFETs</subject><subject>Oscillators, resonators, synthetizers</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Silicon on insulator technology</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>Velocity measurement</subject><subject>Voltage control</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEUhYMoWKtrF24GQcTFtPfmNZmltPUBI11U1yFNE5zSmalJu_DfmzKFgquzuN85XD5CbhFGiFCOq9l0RAH4SHFGUZyRAQqhchCSnZMBFBxzhiAvyVWMawDkvOAD8rSYzqezKvuYL15mn5nvQrZ1IUVjWusy134fsnHt7ppceLOJ7uaYQ_KVGpO3vJq_vk-eq9wyAbt8Kb0VXqI3CjlwapXgyhlq7XLljCxX6e4KAEsVSGtpyZdYMGHQCysAJRuSx353G7qfvYs73dTRus3GtK7bR61KSQFpyRJ5_49cd_vQpud0iRQKkFIkaNxDNnQxBuf1NtSNCb8aQR_E6SROH8TpXlxqPBxnTbRm40MyUMdTTQqRnKrE3fVc7Zw7nVlZKInsD6m6cvo</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>King Jien Chui</creator><creator>Samudra, G.S.</creator><creator>Yee-Chia Yeo</creator><creator>Kheng-Chok Tee</creator><creator>Leong, K.-W.</creator><creator>Kian Meng Tee</creator><creator>Benistant, F.</creator><creator>Lap Chan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050301</creationdate><title>SDODEL MOSFET for performance enhancement</title><author>King Jien Chui ; Samudra, G.S. ; Yee-Chia Yeo ; Kheng-Chok Tee ; Leong, K.-W. ; Kian Meng Tee ; Benistant, F. ; Lap Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b6fc5f61fa814042c8548ea2ccbdea69d6fce700c2806cc294b1735a1f5c50163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Circuit properties</topic><topic>CMOS process</topic><topic>Depletion</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectrics and electrical insulation</topic><topic>Doping</topic><topic>Drains</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical junctions</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Implants</topic><topic>Integrated circuits</topic><topic>Junction capacitance</topic><topic>MOSFET</topic><topic>MOSFET circuits</topic><topic>MOSFETs</topic><topic>Oscillators, resonators, synthetizers</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Silicon on insulator technology</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>Velocity measurement</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King Jien Chui</creatorcontrib><creatorcontrib>Samudra, G.S.</creatorcontrib><creatorcontrib>Yee-Chia Yeo</creatorcontrib><creatorcontrib>Kheng-Chok Tee</creatorcontrib><creatorcontrib>Leong, K.-W.</creatorcontrib><creatorcontrib>Kian Meng Tee</creatorcontrib><creatorcontrib>Benistant, F.</creatorcontrib><creatorcontrib>Lap Chan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>King Jien Chui</au><au>Samudra, G.S.</au><au>Yee-Chia Yeo</au><au>Kheng-Chok Tee</au><au>Leong, K.-W.</au><au>Kian Meng Tee</au><au>Benistant, F.</au><au>Lap Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SDODEL MOSFET for performance enhancement</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2005-03-01</date><risdate>2005</risdate><volume>26</volume><issue>3</issue><spage>205</spage><epage>207</epage><pages>205-207</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>A high-energy, low-dose implant of the source/drain (S/D) doping type is introduced after the gate definition step to form doped regions beneath and separated from the source and drain regions to fabricate source/drain on depletion layer (SDODEL) transistors. Under zero bias, these doped regions are fully depleted and the resulting transistor structure is termed an SDODEL MOSFET. The fully depleted regions act electrically like insulators, as in the case of silicon-on-insulator (SOI), to reduce junction capacitance. SDODEL MOSFETs with 0.16-μm gate length are fabricated by a slightly modified CMOS process without any additional masking steps. Subthreshold slope, simulated threshold voltage V T rolloff, and off-state leakage I/sub off/ are comparable with control devices. The junction capacitance in SDODEL MOSFETs is found to be reduced by more than 40% compared to conventional MOSFETs. Measurement of ring oscillator speeds demonstrates that SDODEL MOSFETs enable a 15% reduction in gate delay t/sub d/ for each inverter stage. SDODEL transistors provide a low-cost alternative to SOI for reduction of S/D junction capacitance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2004.843215</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2005-03, Vol.26 (3), p.205-207 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_pascalfrancis_primary_16555638 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Capacitance Circuit properties CMOS process Depletion Design. Technologies. Operation analysis. Testing Dielectrics and electrical insulation Doping Drains Electric, optical and optoelectronic circuits Electrical junctions Electronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Gates Implants Integrated circuits Junction capacitance MOSFET MOSFET circuits MOSFETs Oscillators, resonators, synthetizers Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Silicon on insulator technology Threshold voltage Transistors Velocity measurement Voltage control |
title | SDODEL MOSFET for performance enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SDODEL%20MOSFET%20for%20performance%20enhancement&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=King%20Jien%20Chui&rft.date=2005-03-01&rft.volume=26&rft.issue=3&rft.spage=205&rft.epage=207&rft.pages=205-207&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2004.843215&rft_dat=%3Cproquest_RIE%3E2543579931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912070665&rft_id=info:pmid/&rft_ieee_id=1397861&rfr_iscdi=true |