Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling

Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-02, Vol.17 (2), p.023601.1-023601.7
Hauptverfasser: Lutz, Barry R., Chen, Jian, Schwartz, Daniel T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023601.7
container_issue 2
container_start_page 023601.1
container_title Physics of fluids (1994)
container_volume 17
creator Lutz, Barry R.
Chen, Jian
Schwartz, Daniel T.
description Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length 1.5 mm ; radii a = 125 , 250, and 500 μ m ) within identical channels (height 2 h = 1.5 mm ; width 4 mm ) over a range of oscillation frequencies ( 40 ⩽ ω ⩽ 1000 Hz ) . The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness δ AC and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by δ AC ∕ a as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to δ AC ∕ h and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.
doi_str_mv 10.1063/1.1824137
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16538021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1824137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqUw8A-8MICUYseJHbOhigJSEQMwR659aQ2pU9lpURA_HodW6gTT3el97-nuEDqnZEQJZ9d0RIs0o0wcoAElhUwE5_yw7wVJOGf0GJ2E8E4IYTLlA_T9ZLVvgm5WVuPQgjJdLB7U0ro5BmMsBKzj3ILByjdrZ3BYNL7FuqutM-ADtg4rrBfKOahv8KRuPvHGhrWq7ZdqbRPVaHppm48YVasOPA46im5-io4qVQc429UhepvcvY4fkunz_eP4dppoJvM20VwyCaAyUc0KRquZ0VIQmjHDciFSmVFKgXFu0ryQBc1BsBmQjACXBeOSsCG63Ob2pwYPVbnydql8V1JS9m8rabl7W2QvtuxK9VtWXjltw97Ac1aQlEbuassFbdvfM_8N_RPeNH4PlitTsR9rHYmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</title><source>American Institute of Physics</source><source>AIP Digital Archive</source><creator>Lutz, Barry R. ; Chen, Jian ; Schwartz, Daniel T.</creator><creatorcontrib>Lutz, Barry R. ; Chen, Jian ; Schwartz, Daniel T.</creatorcontrib><description>Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length 1.5 mm ; radii a = 125 , 250, and 500 μ m ) within identical channels (height 2 h = 1.5 mm ; width 4 mm ) over a range of oscillation frequencies ( 40 ⩽ ω ⩽ 1000 Hz ) . The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness δ AC and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by δ AC ∕ a as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to δ AC ∕ h and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1824137</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied fluid mechanics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Physics of fluids (1994), 2005-02, Vol.17 (2), p.023601.1-023601.7</ispartof><rights>American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</citedby><cites>FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16538021$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lutz, Barry R.</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Schwartz, Daniel T.</creatorcontrib><title>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</title><title>Physics of fluids (1994)</title><description>Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length 1.5 mm ; radii a = 125 , 250, and 500 μ m ) within identical channels (height 2 h = 1.5 mm ; width 4 mm ) over a range of oscillation frequencies ( 40 ⩽ ω ⩽ 1000 Hz ) . The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness δ AC and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by δ AC ∕ a as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to δ AC ∕ h and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.</description><subject>Applied fluid mechanics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqUw8A-8MICUYseJHbOhigJSEQMwR659aQ2pU9lpURA_HodW6gTT3el97-nuEDqnZEQJZ9d0RIs0o0wcoAElhUwE5_yw7wVJOGf0GJ2E8E4IYTLlA_T9ZLVvgm5WVuPQgjJdLB7U0ro5BmMsBKzj3ILByjdrZ3BYNL7FuqutM-ADtg4rrBfKOahv8KRuPvHGhrWq7ZdqbRPVaHppm48YVasOPA46im5-io4qVQc429UhepvcvY4fkunz_eP4dppoJvM20VwyCaAyUc0KRquZ0VIQmjHDciFSmVFKgXFu0ryQBc1BsBmQjACXBeOSsCG63Ob2pwYPVbnydql8V1JS9m8rabl7W2QvtuxK9VtWXjltw97Ac1aQlEbuassFbdvfM_8N_RPeNH4PlitTsR9rHYmi</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Lutz, Barry R.</creator><creator>Chen, Jian</creator><creator>Schwartz, Daniel T.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050201</creationdate><title>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</title><author>Lutz, Barry R. ; Chen, Jian ; Schwartz, Daniel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied fluid mechanics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutz, Barry R.</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Schwartz, Daniel T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutz, Barry R.</au><au>Chen, Jian</au><au>Schwartz, Daniel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>023601.1</spage><epage>023601.7</epage><pages>023601.1-023601.7</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length 1.5 mm ; radii a = 125 , 250, and 500 μ m ) within identical channels (height 2 h = 1.5 mm ; width 4 mm ) over a range of oscillation frequencies ( 40 ⩽ ω ⩽ 1000 Hz ) . The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness δ AC and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by δ AC ∕ a as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to δ AC ∕ h and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1824137</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-02, Vol.17 (2), p.023601.1-023601.7
issn 1070-6631
1089-7666
language eng
recordid cdi_pascalfrancis_primary_16538021
source American Institute of Physics; AIP Digital Archive
subjects Applied fluid mechanics
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Physics
title Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20steady%20streaming%20eddies%20created%20around%20short%20cylinders%20in%20a%20channel:%20Flow%20visualization%20and%20Stokes%20layer%20scaling&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Lutz,%20Barry%20R.&rft.date=2005-02-01&rft.volume=17&rft.issue=2&rft.spage=023601.1&rft.epage=023601.7&rft.pages=023601.1-023601.7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1824137&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_1824137%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true