Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling
Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2005-02, Vol.17 (2), p.023601.1-023601.7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023601.7 |
---|---|
container_issue | 2 |
container_start_page | 023601.1 |
container_title | Physics of fluids (1994) |
container_volume | 17 |
creator | Lutz, Barry R. Chen, Jian Schwartz, Daniel T. |
description | Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length
1.5
mm
; radii
a
=
125
, 250, and
500
μ
m
) within identical channels (height
2
h
=
1.5
mm
; width
4
mm
) over a range of oscillation frequencies
(
40
⩽
ω
⩽
1000
Hz
)
. The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness
δ
AC
and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by
δ
AC
∕
a
as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to
δ
AC
∕
h
and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices. |
doi_str_mv | 10.1063/1.1824137 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16538021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1824137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqUw8A-8MICUYseJHbOhigJSEQMwR659aQ2pU9lpURA_HodW6gTT3el97-nuEDqnZEQJZ9d0RIs0o0wcoAElhUwE5_yw7wVJOGf0GJ2E8E4IYTLlA_T9ZLVvgm5WVuPQgjJdLB7U0ro5BmMsBKzj3ILByjdrZ3BYNL7FuqutM-ADtg4rrBfKOahv8KRuPvHGhrWq7ZdqbRPVaHppm48YVasOPA46im5-io4qVQc429UhepvcvY4fkunz_eP4dppoJvM20VwyCaAyUc0KRquZ0VIQmjHDciFSmVFKgXFu0ryQBc1BsBmQjACXBeOSsCG63Ob2pwYPVbnydql8V1JS9m8rabl7W2QvtuxK9VtWXjltw97Ac1aQlEbuassFbdvfM_8N_RPeNH4PlitTsR9rHYmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</title><source>American Institute of Physics</source><source>AIP Digital Archive</source><creator>Lutz, Barry R. ; Chen, Jian ; Schwartz, Daniel T.</creator><creatorcontrib>Lutz, Barry R. ; Chen, Jian ; Schwartz, Daniel T.</creatorcontrib><description>Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length
1.5
mm
; radii
a
=
125
, 250, and
500
μ
m
) within identical channels (height
2
h
=
1.5
mm
; width
4
mm
) over a range of oscillation frequencies
(
40
⩽
ω
⩽
1000
Hz
)
. The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness
δ
AC
and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by
δ
AC
∕
a
as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to
δ
AC
∕
h
and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1824137</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied fluid mechanics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Physics of fluids (1994), 2005-02, Vol.17 (2), p.023601.1-023601.7</ispartof><rights>American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</citedby><cites>FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16538021$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lutz, Barry R.</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Schwartz, Daniel T.</creatorcontrib><title>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</title><title>Physics of fluids (1994)</title><description>Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length
1.5
mm
; radii
a
=
125
, 250, and
500
μ
m
) within identical channels (height
2
h
=
1.5
mm
; width
4
mm
) over a range of oscillation frequencies
(
40
⩽
ω
⩽
1000
Hz
)
. The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness
δ
AC
and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by
δ
AC
∕
a
as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to
δ
AC
∕
h
and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.</description><subject>Applied fluid mechanics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqUw8A-8MICUYseJHbOhigJSEQMwR659aQ2pU9lpURA_HodW6gTT3el97-nuEDqnZEQJZ9d0RIs0o0wcoAElhUwE5_yw7wVJOGf0GJ2E8E4IYTLlA_T9ZLVvgm5WVuPQgjJdLB7U0ro5BmMsBKzj3ILByjdrZ3BYNL7FuqutM-ADtg4rrBfKOahv8KRuPvHGhrWq7ZdqbRPVaHppm48YVasOPA46im5-io4qVQc429UhepvcvY4fkunz_eP4dppoJvM20VwyCaAyUc0KRquZ0VIQmjHDciFSmVFKgXFu0ryQBc1BsBmQjACXBeOSsCG63Ob2pwYPVbnydql8V1JS9m8rabl7W2QvtuxK9VtWXjltw97Ac1aQlEbuassFbdvfM_8N_RPeNH4PlitTsR9rHYmi</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Lutz, Barry R.</creator><creator>Chen, Jian</creator><creator>Schwartz, Daniel T.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050201</creationdate><title>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</title><author>Lutz, Barry R. ; Chen, Jian ; Schwartz, Daniel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c6939eea47fb831fbdc970143d3577294111e366d2589815e73be040e69836903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied fluid mechanics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutz, Barry R.</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Schwartz, Daniel T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutz, Barry R.</au><au>Chen, Jian</au><au>Schwartz, Daniel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>023601.1</spage><epage>023601.7</epage><pages>023601.1-023601.7</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Microscale steady streaming eddies created using low-intensity fluid oscillations offer appealing options for controlling fluids in microfluidic systems. We describe the three-dimensional (3D) steady streaming flow formed in a small channel containing single fixed cylinders when the channel fluid is oscillated at low intensity. Experiments include three cylinder sizes (length
1.5
mm
; radii
a
=
125
, 250, and
500
μ
m
) within identical channels (height
2
h
=
1.5
mm
; width
4
mm
) over a range of oscillation frequencies
(
40
⩽
ω
⩽
1000
Hz
)
. The size of key flow features is measured from steady particle pathline images recorded within three flow symmetry planes. The resulting 3D streaming exhibits two distinct recirculating flows that are governed by the Stokes layer thickness
δ
AC
and geometric length scales. Four symmetric recirculating eddies are created adjacent to the cylinder far from channel walls, and their size is governed by
δ
AC
∕
a
as described by steady streaming theory for a 2D geometry. The cylinder/wall boundary layer junction drives a 3D recirculating flow with size that is directly proportional to
δ
AC
∕
h
and is not affected by a threefold variation of the cylinder radius. The flow images and scaling describe an organized 3D steady streaming flow that may be tuned to control fluid and its contents in microfluidic devices.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1824137</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2005-02, Vol.17 (2), p.023601.1-023601.7 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_pascalfrancis_primary_16538021 |
source | American Institute of Physics; AIP Digital Archive |
subjects | Applied fluid mechanics Exact sciences and technology Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Physics |
title | Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and Stokes layer scaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20steady%20streaming%20eddies%20created%20around%20short%20cylinders%20in%20a%20channel:%20Flow%20visualization%20and%20Stokes%20layer%20scaling&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Lutz,%20Barry%20R.&rft.date=2005-02-01&rft.volume=17&rft.issue=2&rft.spage=023601.1&rft.epage=023601.7&rft.pages=023601.1-023601.7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1824137&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_1824137%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |