Stokes’ first problem for an Oldroyd-B fluid in a porous half space

Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a y -dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-02, Vol.17 (2), p.023101-023101-7
Hauptverfasser: Tan, Wenchang, Masuoka, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023101-7
container_issue 2
container_start_page 023101
container_title Physics of fluids (1994)
container_volume 17
creator Tan, Wenchang
Masuoka, Takashi
description Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a y -dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if α > 1 ∕ 4 [ ( α t ∕ Re ) + Re ] 2 , oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where α and α t are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.
doi_str_mv 10.1063/1.1850409
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16538020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1850409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhS0EEqUw8AZeGEBKubYTOx4YoCo_UqUOwGw5ji0CaRzZKVI3XoPX40lISaVOIKZ7hu8c3XMQOiUwIcDZJZmQPIMU5B4aEchlIjjn-xstIOGckUN0FOMrADBJ-QjNHjv_ZuPXxyd2VYgdboMvarvEzgesG7yoy-DXZXKDXb2qSlw1WOPWB7-K-EXXDsdWG3uMDpyuoz3Z3jF6vp09Te-T-eLuYXo9TwzLWZcQwYgVwqWUMUN0BoKlmsvUWiZLQvMUuIBMmBIo4ZLZjFJLiyK3BQUqC8LG6HzINcHHGKxTbaiWOqwVAbXpr4ja9u_Zs4FtdTT9p0E3poo7A89YDhR67mrgoqk63VW--T10GEv9LKWGpXr_xb_9f8HvPuxA1ZaOfQNd7YnW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Tan, Wenchang ; Masuoka, Takashi</creator><creatorcontrib>Tan, Wenchang ; Masuoka, Takashi</creatorcontrib><description>Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a y -dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if α &gt; 1 ∕ 4 [ ( α t ∕ Re ) + Re ] 2 , oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where α and α t are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1850409</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Non-newtonian fluid flows ; Nonhomogeneous flows ; Physics</subject><ispartof>Physics of fluids (1994), 2005-02, Vol.17 (2), p.023101-023101-7</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</citedby><cites>FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16538020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Wenchang</creatorcontrib><creatorcontrib>Masuoka, Takashi</creatorcontrib><title>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</title><title>Physics of fluids (1994)</title><description>Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a y -dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if α &gt; 1 ∕ 4 [ ( α t ∕ Re ) + Re ] 2 , oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where α and α t are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.</description><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Non-newtonian fluid flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAUhS0EEqUw8AZeGEBKubYTOx4YoCo_UqUOwGw5ji0CaRzZKVI3XoPX40lISaVOIKZ7hu8c3XMQOiUwIcDZJZmQPIMU5B4aEchlIjjn-xstIOGckUN0FOMrADBJ-QjNHjv_ZuPXxyd2VYgdboMvarvEzgesG7yoy-DXZXKDXb2qSlw1WOPWB7-K-EXXDsdWG3uMDpyuoz3Z3jF6vp09Te-T-eLuYXo9TwzLWZcQwYgVwqWUMUN0BoKlmsvUWiZLQvMUuIBMmBIo4ZLZjFJLiyK3BQUqC8LG6HzINcHHGKxTbaiWOqwVAbXpr4ja9u_Zs4FtdTT9p0E3poo7A89YDhR67mrgoqk63VW--T10GEv9LKWGpXr_xb_9f8HvPuxA1ZaOfQNd7YnW</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Tan, Wenchang</creator><creator>Masuoka, Takashi</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050201</creationdate><title>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</title><author>Tan, Wenchang ; Masuoka, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Non-newtonian fluid flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Wenchang</creatorcontrib><creatorcontrib>Masuoka, Takashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Wenchang</au><au>Masuoka, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>023101</spage><epage>023101-7</epage><pages>023101-023101-7</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a y -dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if α &gt; 1 ∕ 4 [ ( α t ∕ Re ) + Re ] 2 , oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where α and α t are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1850409</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-02, Vol.17 (2), p.023101-023101-7
issn 1070-6631
1089-7666
language eng
recordid cdi_pascalfrancis_primary_16538020
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Non-newtonian fluid flows
Nonhomogeneous flows
Physics
title Stokes’ first problem for an Oldroyd-B fluid in a porous half space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes%E2%80%99%20first%20problem%20for%20an%20Oldroyd-B%20fluid%20in%20a%20porous%20half%20space&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Tan,%20Wenchang&rft.date=2005-02-01&rft.volume=17&rft.issue=2&rft.spage=023101&rft.epage=023101-7&rft.pages=023101-023101-7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1850409&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_1850409%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true