Stokes’ first problem for an Oldroyd-B fluid in a porous half space
Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a y -dep...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2005-02, Vol.17 (2), p.023101-023101-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023101-7 |
---|---|
container_issue | 2 |
container_start_page | 023101 |
container_title | Physics of fluids (1994) |
container_volume | 17 |
creator | Tan, Wenchang Masuoka, Takashi |
description | Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a
y
-dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if
α
>
1
∕
4
[
(
α
t
∕
Re
)
+
Re
]
2
, oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where
α
and
α
t
are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases. |
doi_str_mv | 10.1063/1.1850409 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16538020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1850409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhS0EEqUw8AZeGEBKubYTOx4YoCo_UqUOwGw5ji0CaRzZKVI3XoPX40lISaVOIKZ7hu8c3XMQOiUwIcDZJZmQPIMU5B4aEchlIjjn-xstIOGckUN0FOMrADBJ-QjNHjv_ZuPXxyd2VYgdboMvarvEzgesG7yoy-DXZXKDXb2qSlw1WOPWB7-K-EXXDsdWG3uMDpyuoz3Z3jF6vp09Te-T-eLuYXo9TwzLWZcQwYgVwqWUMUN0BoKlmsvUWiZLQvMUuIBMmBIo4ZLZjFJLiyK3BQUqC8LG6HzINcHHGKxTbaiWOqwVAbXpr4ja9u_Zs4FtdTT9p0E3poo7A89YDhR67mrgoqk63VW--T10GEv9LKWGpXr_xb_9f8HvPuxA1ZaOfQNd7YnW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Tan, Wenchang ; Masuoka, Takashi</creator><creatorcontrib>Tan, Wenchang ; Masuoka, Takashi</creatorcontrib><description>Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a
y
-dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if
α
>
1
∕
4
[
(
α
t
∕
Re
)
+
Re
]
2
, oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where
α
and
α
t
are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1850409</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Non-newtonian fluid flows ; Nonhomogeneous flows ; Physics</subject><ispartof>Physics of fluids (1994), 2005-02, Vol.17 (2), p.023101-023101-7</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</citedby><cites>FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16538020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Wenchang</creatorcontrib><creatorcontrib>Masuoka, Takashi</creatorcontrib><title>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</title><title>Physics of fluids (1994)</title><description>Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a
y
-dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if
α
>
1
∕
4
[
(
α
t
∕
Re
)
+
Re
]
2
, oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where
α
and
α
t
are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.</description><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Non-newtonian fluid flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAUhS0EEqUw8AZeGEBKubYTOx4YoCo_UqUOwGw5ji0CaRzZKVI3XoPX40lISaVOIKZ7hu8c3XMQOiUwIcDZJZmQPIMU5B4aEchlIjjn-xstIOGckUN0FOMrADBJ-QjNHjv_ZuPXxyd2VYgdboMvarvEzgesG7yoy-DXZXKDXb2qSlw1WOPWB7-K-EXXDsdWG3uMDpyuoz3Z3jF6vp09Te-T-eLuYXo9TwzLWZcQwYgVwqWUMUN0BoKlmsvUWiZLQvMUuIBMmBIo4ZLZjFJLiyK3BQUqC8LG6HzINcHHGKxTbaiWOqwVAbXpr4ja9u_Zs4FtdTT9p0E3poo7A89YDhR67mrgoqk63VW--T10GEv9LKWGpXr_xb_9f8HvPuxA1ZaOfQNd7YnW</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Tan, Wenchang</creator><creator>Masuoka, Takashi</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050201</creationdate><title>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</title><author>Tan, Wenchang ; Masuoka, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-1731e77f4233c1a50734a694ee39d1284067057cd021693e522e2bb8eb2029b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Non-newtonian fluid flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Wenchang</creatorcontrib><creatorcontrib>Masuoka, Takashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Wenchang</au><au>Masuoka, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes’ first problem for an Oldroyd-B fluid in a porous half space</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>023101</spage><epage>023101-7</epage><pages>023101-023101-7</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Based on a modified Darcy’s law for a viscoelastic fluid, Stokes’ first problem was extended to that for an Oldroyd-B fluid in a porous half space. By using Fourier sine transform, an exact solution was obtained. In contrast to the classical Stokes’ first problem for a clear fluid, there is a
y
-dependent steady state solution for an Oldroyd-B fluid in the porous half space, which is a damping exponential function with respect to the distance from the flat plate. The thickness of the boundary layer, which tends to be a limited value, is also different from that of a clear fluid. The effect of viscoelasticity on the unsteady flow in porous media is investigated. It was found if
α
>
1
∕
4
[
(
α
t
∕
Re
)
+
Re
]
2
, oscillations in velocity occur obviously and the system exhibits viscoelastic behaviors, where
α
and
α
t
are nondimensional relaxation and retardation times, respectively, Re is Reynold number in porous media. Some previous solutions of Stokes’ first problem corresponding to Maxwell fluid and Newtonian fluid in porous or nonporous half space can be easily obtained from our results in different limiting cases.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1850409</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2005-02, Vol.17 (2), p.023101-023101-7 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_pascalfrancis_primary_16538020 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Exact sciences and technology Flows through porous media Fluid dynamics Fundamental areas of phenomenology (including applications) Non-newtonian fluid flows Nonhomogeneous flows Physics |
title | Stokes’ first problem for an Oldroyd-B fluid in a porous half space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes%E2%80%99%20first%20problem%20for%20an%20Oldroyd-B%20fluid%20in%20a%20porous%20half%20space&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Tan,%20Wenchang&rft.date=2005-02-01&rft.volume=17&rft.issue=2&rft.spage=023101&rft.epage=023101-7&rft.pages=023101-023101-7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1850409&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_1850409%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |