Influence of the CO2 Antisolvent Effect on Ultrasound-Induced Polymer Scission Kinetics

Ultrasound-induced polymer scission is a nonrandom process which alters the molecular weight distribution of polymers. However, transient cavitation, and consequently polymer scission, is not possible in concentrated polymer solutions due to the high liquid viscosity. The addition of an antisolvent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2005-02, Vol.38 (4), p.1493-1499
Hauptverfasser: Kuijpers, Martijn W. A, Prickaerts, Ramona M. H, Kemmere, Maartje F, Keurentjes, Jos T. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 4
container_start_page 1493
container_title Macromolecules
container_volume 38
creator Kuijpers, Martijn W. A
Prickaerts, Ramona M. H
Kemmere, Maartje F
Keurentjes, Jos T. F
description Ultrasound-induced polymer scission is a nonrandom process which alters the molecular weight distribution of polymers. However, transient cavitation, and consequently polymer scission, is not possible in concentrated polymer solutions due to the high liquid viscosity. The addition of an antisolvent can be used to circumvent this problem because the antisolvent decreases the gyration radius of polymer chains, which induces a reduction in liquid viscosity. To determine the influence of carbon dioxide (CO2) as an antisolvent on the ultrasound-induced scission rate, ultrasonic scission experiments of poly(methyl methacrylate) have been performed in bulk methyl methacrylate (MMA) as well as in CO2-expanded MMA. Modeling the experimental time-dependent molecular weight distributions (MWD) has revealed the scission kinetics at different polymer concentrations and CO2 fractions. At low polymer concentrations, the scission rate is decreased upon an increased CO2 content. This is a result of the higher vapor pressure of CO2, which cushions the cavitation. However, at higher polymer concentrations, this effect is counteracted by the viscosity reduction induced by CO2. As a consequence, the scission rate in CO2-expanded MMA is higher as compared to bulk MMA for solutions with a high polymer concentration. The results show that ultrasound-induced scission in pressurized CO2 can alter and control the MWD of polymers even in concentrated polymer solutions, whereas ultrasound-induced scission in bulk solutions is limited to relatively low polymer concentrations.
doi_str_mv 10.1021/ma048895d
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16535652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a715214712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-c67b382e809e899b3e79959c5b17e28da309df913f88efaa603310678246e2ea3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKcH_0EuHqtfkqZNjmNMVxxM0OGxfEu_YEeXjiYV9u-dKHp6Lw8vDw9jtwLuBUjxsEfIjbG6OWMToSVk2ih9ziYAMs-stOUlu4pxByCEztWEvVfBdyMFR7z3PH0Qn68ln4XUxr77pJD4wntyifeBb7o0YOzH0GRVaEZHDX_pu-OeBv7q2hjbE_PcBkqti9fswmMX6eZ3p2zzuHibL7PV-qmaz1YZSqFT5opyq4wkA5aMtVtFpbXaOr0VJUnToALbeCuUN4Y8YgFKCShKI_OCJKGasruf3wNGh50fMJxU6sPQ7nE41qLQShda_nPoYr3rxyGcrGoB9Xe1-q-a-gIWqF5_</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of the CO2 Antisolvent Effect on Ultrasound-Induced Polymer Scission Kinetics</title><source>American Chemical Society Journals</source><creator>Kuijpers, Martijn W. A ; Prickaerts, Ramona M. H ; Kemmere, Maartje F ; Keurentjes, Jos T. F</creator><creatorcontrib>Kuijpers, Martijn W. A ; Prickaerts, Ramona M. H ; Kemmere, Maartje F ; Keurentjes, Jos T. F</creatorcontrib><description>Ultrasound-induced polymer scission is a nonrandom process which alters the molecular weight distribution of polymers. However, transient cavitation, and consequently polymer scission, is not possible in concentrated polymer solutions due to the high liquid viscosity. The addition of an antisolvent can be used to circumvent this problem because the antisolvent decreases the gyration radius of polymer chains, which induces a reduction in liquid viscosity. To determine the influence of carbon dioxide (CO2) as an antisolvent on the ultrasound-induced scission rate, ultrasonic scission experiments of poly(methyl methacrylate) have been performed in bulk methyl methacrylate (MMA) as well as in CO2-expanded MMA. Modeling the experimental time-dependent molecular weight distributions (MWD) has revealed the scission kinetics at different polymer concentrations and CO2 fractions. At low polymer concentrations, the scission rate is decreased upon an increased CO2 content. This is a result of the higher vapor pressure of CO2, which cushions the cavitation. However, at higher polymer concentrations, this effect is counteracted by the viscosity reduction induced by CO2. As a consequence, the scission rate in CO2-expanded MMA is higher as compared to bulk MMA for solutions with a high polymer concentration. The results show that ultrasound-induced scission in pressurized CO2 can alter and control the MWD of polymers even in concentrated polymer solutions, whereas ultrasound-induced scission in bulk solutions is limited to relatively low polymer concentrations.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma048895d</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical reactions and properties ; Degradation ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers</subject><ispartof>Macromolecules, 2005-02, Vol.38 (4), p.1493-1499</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma048895d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma048895d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16535652$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuijpers, Martijn W. A</creatorcontrib><creatorcontrib>Prickaerts, Ramona M. H</creatorcontrib><creatorcontrib>Kemmere, Maartje F</creatorcontrib><creatorcontrib>Keurentjes, Jos T. F</creatorcontrib><title>Influence of the CO2 Antisolvent Effect on Ultrasound-Induced Polymer Scission Kinetics</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Ultrasound-induced polymer scission is a nonrandom process which alters the molecular weight distribution of polymers. However, transient cavitation, and consequently polymer scission, is not possible in concentrated polymer solutions due to the high liquid viscosity. The addition of an antisolvent can be used to circumvent this problem because the antisolvent decreases the gyration radius of polymer chains, which induces a reduction in liquid viscosity. To determine the influence of carbon dioxide (CO2) as an antisolvent on the ultrasound-induced scission rate, ultrasonic scission experiments of poly(methyl methacrylate) have been performed in bulk methyl methacrylate (MMA) as well as in CO2-expanded MMA. Modeling the experimental time-dependent molecular weight distributions (MWD) has revealed the scission kinetics at different polymer concentrations and CO2 fractions. At low polymer concentrations, the scission rate is decreased upon an increased CO2 content. This is a result of the higher vapor pressure of CO2, which cushions the cavitation. However, at higher polymer concentrations, this effect is counteracted by the viscosity reduction induced by CO2. As a consequence, the scission rate in CO2-expanded MMA is higher as compared to bulk MMA for solutions with a high polymer concentration. The results show that ultrasound-induced scission in pressurized CO2 can alter and control the MWD of polymers even in concentrated polymer solutions, whereas ultrasound-induced scission in bulk solutions is limited to relatively low polymer concentrations.</description><subject>Applied sciences</subject><subject>Chemical reactions and properties</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKcH_0EuHqtfkqZNjmNMVxxM0OGxfEu_YEeXjiYV9u-dKHp6Lw8vDw9jtwLuBUjxsEfIjbG6OWMToSVk2ih9ziYAMs-stOUlu4pxByCEztWEvVfBdyMFR7z3PH0Qn68ln4XUxr77pJD4wntyifeBb7o0YOzH0GRVaEZHDX_pu-OeBv7q2hjbE_PcBkqti9fswmMX6eZ3p2zzuHibL7PV-qmaz1YZSqFT5opyq4wkA5aMtVtFpbXaOr0VJUnToALbeCuUN4Y8YgFKCShKI_OCJKGasruf3wNGh50fMJxU6sPQ7nE41qLQShda_nPoYr3rxyGcrGoB9Xe1-q-a-gIWqF5_</recordid><startdate>20050222</startdate><enddate>20050222</enddate><creator>Kuijpers, Martijn W. A</creator><creator>Prickaerts, Ramona M. H</creator><creator>Kemmere, Maartje F</creator><creator>Keurentjes, Jos T. F</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20050222</creationdate><title>Influence of the CO2 Antisolvent Effect on Ultrasound-Induced Polymer Scission Kinetics</title><author>Kuijpers, Martijn W. A ; Prickaerts, Ramona M. H ; Kemmere, Maartje F ; Keurentjes, Jos T. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-c67b382e809e899b3e79959c5b17e28da309df913f88efaa603310678246e2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical reactions and properties</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuijpers, Martijn W. A</creatorcontrib><creatorcontrib>Prickaerts, Ramona M. H</creatorcontrib><creatorcontrib>Kemmere, Maartje F</creatorcontrib><creatorcontrib>Keurentjes, Jos T. F</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuijpers, Martijn W. A</au><au>Prickaerts, Ramona M. H</au><au>Kemmere, Maartje F</au><au>Keurentjes, Jos T. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the CO2 Antisolvent Effect on Ultrasound-Induced Polymer Scission Kinetics</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2005-02-22</date><risdate>2005</risdate><volume>38</volume><issue>4</issue><spage>1493</spage><epage>1499</epage><pages>1493-1499</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Ultrasound-induced polymer scission is a nonrandom process which alters the molecular weight distribution of polymers. However, transient cavitation, and consequently polymer scission, is not possible in concentrated polymer solutions due to the high liquid viscosity. The addition of an antisolvent can be used to circumvent this problem because the antisolvent decreases the gyration radius of polymer chains, which induces a reduction in liquid viscosity. To determine the influence of carbon dioxide (CO2) as an antisolvent on the ultrasound-induced scission rate, ultrasonic scission experiments of poly(methyl methacrylate) have been performed in bulk methyl methacrylate (MMA) as well as in CO2-expanded MMA. Modeling the experimental time-dependent molecular weight distributions (MWD) has revealed the scission kinetics at different polymer concentrations and CO2 fractions. At low polymer concentrations, the scission rate is decreased upon an increased CO2 content. This is a result of the higher vapor pressure of CO2, which cushions the cavitation. However, at higher polymer concentrations, this effect is counteracted by the viscosity reduction induced by CO2. As a consequence, the scission rate in CO2-expanded MMA is higher as compared to bulk MMA for solutions with a high polymer concentration. The results show that ultrasound-induced scission in pressurized CO2 can alter and control the MWD of polymers even in concentrated polymer solutions, whereas ultrasound-induced scission in bulk solutions is limited to relatively low polymer concentrations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma048895d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2005-02, Vol.38 (4), p.1493-1499
issn 0024-9297
1520-5835
language eng
recordid cdi_pascalfrancis_primary_16535652
source American Chemical Society Journals
subjects Applied sciences
Chemical reactions and properties
Degradation
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
title Influence of the CO2 Antisolvent Effect on Ultrasound-Induced Polymer Scission Kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20CO2%20Antisolvent%20Effect%20on%20Ultrasound-Induced%20Polymer%20Scission%20Kinetics&rft.jtitle=Macromolecules&rft.au=Kuijpers,%20Martijn%20W.%20A&rft.date=2005-02-22&rft.volume=38&rft.issue=4&rft.spage=1493&rft.epage=1499&rft.pages=1493-1499&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma048895d&rft_dat=%3Cacs_pasca%3Ea715214712%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true