Multivariate Zero-Inflated Poisson Models and Their Applications

The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 1999-02, Vol.41 (1), p.29-38
Hauptverfasser: Li, Chin-Shang, Lu, Jye-Chyi, Park, Jinho, Kim, Kyungmoo, Brinkley, Paul A., Peterson, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 29
container_title Technometrics
container_volume 41
creator Li, Chin-Shang
Lu, Jye-Chyi
Park, Jinho
Kim, Kyungmoo
Brinkley, Paul A.
Peterson, John P.
description The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.
doi_str_mv 10.1080/00401706.1999.10485593
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1648250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1270992</jstor_id><sourcerecordid>1270992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRbxujVfu0luluJHoUUP9eIlpPnAlHRTk63Sf-8ubdGbp2GGZ94ZHgCuERwhyOEdhBQiBusREkJ0I8qrSpATMEAVYSVmmJyCQQ-VPXUOLnJeQYgI5mwA7ufb0PovlbxqbfFuUyynjQtdY4rX6HOOTTGPxoZcqMYUiw_rUzHebILXqvWxyZfgzKmQ7dWhDsHb48Ni8lzOXp6mk_Gs1AShtqyshtpRo4zC9ZIQBJmpaoOIoI4sKcOUEWY550sKmdCcOc6NxbSuEELYETIEN_vcTYqfW5tbuYrb1HQnJUak5p2CHqr3kE4x52Sd3CS_VmknEZS9LHmUJXtZ8iirW7w9pKusVXBJNdrn3-2aclzBX2yV25j-hmMCmUSYQSFwh433mG9cTGv1HVMwslW7ENMxmvzz0Q9oModB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213680173</pqid></control><display><type>article</type><title>Multivariate Zero-Inflated Poisson Models and Their Applications</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Li, Chin-Shang ; Lu, Jye-Chyi ; Park, Jinho ; Kim, Kyungmoo ; Brinkley, Paul A. ; Peterson, John P.</creator><creatorcontrib>Li, Chin-Shang ; Lu, Jye-Chyi ; Park, Jinho ; Kim, Kyungmoo ; Brinkley, Paul A. ; Peterson, John P.</creatorcontrib><description>The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1999.10485593</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis Group</publisher><subject>Applications ; Binomials ; Confidence interval ; Estimation bias ; Estimation methods ; Exact sciences and technology ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Mixture distribution ; Modeling ; Multivariate analysis ; Multivariate Bernoulli ; Multivariate Poisson ; P values ; Parametric models ; Probabilities ; Probability and statistics ; Quality control ; Reliability, life testing, quality control ; Sciences and techniques of general use ; Standard deviation ; Statistics ; Zero-defect probability</subject><ispartof>Technometrics, 1999-02, Vol.41 (1), p.29-38</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>Copyright 1999 The American Statistical Association and the ASQ</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Society for Quality Feb 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</citedby><cites>FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1270992$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1270992$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1648250$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chin-Shang</creatorcontrib><creatorcontrib>Lu, Jye-Chyi</creatorcontrib><creatorcontrib>Park, Jinho</creatorcontrib><creatorcontrib>Kim, Kyungmoo</creatorcontrib><creatorcontrib>Brinkley, Paul A.</creatorcontrib><creatorcontrib>Peterson, John P.</creatorcontrib><title>Multivariate Zero-Inflated Poisson Models and Their Applications</title><title>Technometrics</title><description>The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.</description><subject>Applications</subject><subject>Binomials</subject><subject>Confidence interval</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Mixture distribution</subject><subject>Modeling</subject><subject>Multivariate analysis</subject><subject>Multivariate Bernoulli</subject><subject>Multivariate Poisson</subject><subject>P values</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Quality control</subject><subject>Reliability, life testing, quality control</subject><subject>Sciences and techniques of general use</subject><subject>Standard deviation</subject><subject>Statistics</subject><subject>Zero-defect probability</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMoWKt_QRbxujVfu0luluJHoUUP9eIlpPnAlHRTk63Sf-8ubdGbp2GGZ94ZHgCuERwhyOEdhBQiBusREkJ0I8qrSpATMEAVYSVmmJyCQQ-VPXUOLnJeQYgI5mwA7ufb0PovlbxqbfFuUyynjQtdY4rX6HOOTTGPxoZcqMYUiw_rUzHebILXqvWxyZfgzKmQ7dWhDsHb48Ni8lzOXp6mk_Gs1AShtqyshtpRo4zC9ZIQBJmpaoOIoI4sKcOUEWY550sKmdCcOc6NxbSuEELYETIEN_vcTYqfW5tbuYrb1HQnJUak5p2CHqr3kE4x52Sd3CS_VmknEZS9LHmUJXtZ8iirW7w9pKusVXBJNdrn3-2aclzBX2yV25j-hmMCmUSYQSFwh433mG9cTGv1HVMwslW7ENMxmvzz0Q9oModB</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Li, Chin-Shang</creator><creator>Lu, Jye-Chyi</creator><creator>Park, Jinho</creator><creator>Kim, Kyungmoo</creator><creator>Brinkley, Paul A.</creator><creator>Peterson, John P.</creator><general>Taylor &amp; Francis Group</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990201</creationdate><title>Multivariate Zero-Inflated Poisson Models and Their Applications</title><author>Li, Chin-Shang ; Lu, Jye-Chyi ; Park, Jinho ; Kim, Kyungmoo ; Brinkley, Paul A. ; Peterson, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applications</topic><topic>Binomials</topic><topic>Confidence interval</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Mixture distribution</topic><topic>Modeling</topic><topic>Multivariate analysis</topic><topic>Multivariate Bernoulli</topic><topic>Multivariate Poisson</topic><topic>P values</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Quality control</topic><topic>Reliability, life testing, quality control</topic><topic>Sciences and techniques of general use</topic><topic>Standard deviation</topic><topic>Statistics</topic><topic>Zero-defect probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chin-Shang</creatorcontrib><creatorcontrib>Lu, Jye-Chyi</creatorcontrib><creatorcontrib>Park, Jinho</creatorcontrib><creatorcontrib>Kim, Kyungmoo</creatorcontrib><creatorcontrib>Brinkley, Paul A.</creatorcontrib><creatorcontrib>Peterson, John P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chin-Shang</au><au>Lu, Jye-Chyi</au><au>Park, Jinho</au><au>Kim, Kyungmoo</au><au>Brinkley, Paul A.</au><au>Peterson, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Zero-Inflated Poisson Models and Their Applications</atitle><jtitle>Technometrics</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>41</volume><issue>1</issue><spage>29</spage><epage>38</epage><pages>29-38</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00401706.1999.10485593</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 1999-02, Vol.41 (1), p.29-38
issn 0040-1706
1537-2723
language eng
recordid cdi_pascalfrancis_primary_1648250
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Applications
Binomials
Confidence interval
Estimation bias
Estimation methods
Exact sciences and technology
Mathematics
Maximum likelihood
Maximum likelihood estimation
Mixture distribution
Modeling
Multivariate analysis
Multivariate Bernoulli
Multivariate Poisson
P values
Parametric models
Probabilities
Probability and statistics
Quality control
Reliability, life testing, quality control
Sciences and techniques of general use
Standard deviation
Statistics
Zero-defect probability
title Multivariate Zero-Inflated Poisson Models and Their Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Zero-Inflated%20Poisson%20Models%20and%20Their%20Applications&rft.jtitle=Technometrics&rft.au=Li,%20Chin-Shang&rft.date=1999-02-01&rft.volume=41&rft.issue=1&rft.spage=29&rft.epage=38&rft.pages=29-38&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1999.10485593&rft_dat=%3Cjstor_pasca%3E1270992%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213680173&rft_id=info:pmid/&rft_jstor_id=1270992&rfr_iscdi=true