Multivariate Zero-Inflated Poisson Models and Their Applications
The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems an...
Gespeichert in:
Veröffentlicht in: | Technometrics 1999-02, Vol.41 (1), p.29-38 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Technometrics |
container_volume | 41 |
creator | Li, Chin-Shang Lu, Jye-Chyi Park, Jinho Kim, Kyungmoo Brinkley, Paul A. Peterson, John P. |
description | The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies. |
doi_str_mv | 10.1080/00401706.1999.10485593 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1648250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1270992</jstor_id><sourcerecordid>1270992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRbxujVfu0luluJHoUUP9eIlpPnAlHRTk63Sf-8ubdGbp2GGZ94ZHgCuERwhyOEdhBQiBusREkJ0I8qrSpATMEAVYSVmmJyCQQ-VPXUOLnJeQYgI5mwA7ufb0PovlbxqbfFuUyynjQtdY4rX6HOOTTGPxoZcqMYUiw_rUzHebILXqvWxyZfgzKmQ7dWhDsHb48Ni8lzOXp6mk_Gs1AShtqyshtpRo4zC9ZIQBJmpaoOIoI4sKcOUEWY550sKmdCcOc6NxbSuEELYETIEN_vcTYqfW5tbuYrb1HQnJUak5p2CHqr3kE4x52Sd3CS_VmknEZS9LHmUJXtZ8iirW7w9pKusVXBJNdrn3-2aclzBX2yV25j-hmMCmUSYQSFwh433mG9cTGv1HVMwslW7ENMxmvzz0Q9oModB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213680173</pqid></control><display><type>article</type><title>Multivariate Zero-Inflated Poisson Models and Their Applications</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Li, Chin-Shang ; Lu, Jye-Chyi ; Park, Jinho ; Kim, Kyungmoo ; Brinkley, Paul A. ; Peterson, John P.</creator><creatorcontrib>Li, Chin-Shang ; Lu, Jye-Chyi ; Park, Jinho ; Kim, Kyungmoo ; Brinkley, Paul A. ; Peterson, John P.</creatorcontrib><description>The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1999.10485593</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor & Francis Group</publisher><subject>Applications ; Binomials ; Confidence interval ; Estimation bias ; Estimation methods ; Exact sciences and technology ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Mixture distribution ; Modeling ; Multivariate analysis ; Multivariate Bernoulli ; Multivariate Poisson ; P values ; Parametric models ; Probabilities ; Probability and statistics ; Quality control ; Reliability, life testing, quality control ; Sciences and techniques of general use ; Standard deviation ; Statistics ; Zero-defect probability</subject><ispartof>Technometrics, 1999-02, Vol.41 (1), p.29-38</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>Copyright 1999 The American Statistical Association and the ASQ</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Society for Quality Feb 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</citedby><cites>FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1270992$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1270992$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1648250$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chin-Shang</creatorcontrib><creatorcontrib>Lu, Jye-Chyi</creatorcontrib><creatorcontrib>Park, Jinho</creatorcontrib><creatorcontrib>Kim, Kyungmoo</creatorcontrib><creatorcontrib>Brinkley, Paul A.</creatorcontrib><creatorcontrib>Peterson, John P.</creatorcontrib><title>Multivariate Zero-Inflated Poisson Models and Their Applications</title><title>Technometrics</title><description>The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.</description><subject>Applications</subject><subject>Binomials</subject><subject>Confidence interval</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Mixture distribution</subject><subject>Modeling</subject><subject>Multivariate analysis</subject><subject>Multivariate Bernoulli</subject><subject>Multivariate Poisson</subject><subject>P values</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Quality control</subject><subject>Reliability, life testing, quality control</subject><subject>Sciences and techniques of general use</subject><subject>Standard deviation</subject><subject>Statistics</subject><subject>Zero-defect probability</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMoWKt_QRbxujVfu0luluJHoUUP9eIlpPnAlHRTk63Sf-8ubdGbp2GGZ94ZHgCuERwhyOEdhBQiBusREkJ0I8qrSpATMEAVYSVmmJyCQQ-VPXUOLnJeQYgI5mwA7ufb0PovlbxqbfFuUyynjQtdY4rX6HOOTTGPxoZcqMYUiw_rUzHebILXqvWxyZfgzKmQ7dWhDsHb48Ni8lzOXp6mk_Gs1AShtqyshtpRo4zC9ZIQBJmpaoOIoI4sKcOUEWY550sKmdCcOc6NxbSuEELYETIEN_vcTYqfW5tbuYrb1HQnJUak5p2CHqr3kE4x52Sd3CS_VmknEZS9LHmUJXtZ8iirW7w9pKusVXBJNdrn3-2aclzBX2yV25j-hmMCmUSYQSFwh433mG9cTGv1HVMwslW7ENMxmvzz0Q9oModB</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Li, Chin-Shang</creator><creator>Lu, Jye-Chyi</creator><creator>Park, Jinho</creator><creator>Kim, Kyungmoo</creator><creator>Brinkley, Paul A.</creator><creator>Peterson, John P.</creator><general>Taylor & Francis Group</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990201</creationdate><title>Multivariate Zero-Inflated Poisson Models and Their Applications</title><author>Li, Chin-Shang ; Lu, Jye-Chyi ; Park, Jinho ; Kim, Kyungmoo ; Brinkley, Paul A. ; Peterson, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5ec0cf4dada26b33107d56d1394f3b4724737e888b4079c87f88de24651112f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applications</topic><topic>Binomials</topic><topic>Confidence interval</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Mixture distribution</topic><topic>Modeling</topic><topic>Multivariate analysis</topic><topic>Multivariate Bernoulli</topic><topic>Multivariate Poisson</topic><topic>P values</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Quality control</topic><topic>Reliability, life testing, quality control</topic><topic>Sciences and techniques of general use</topic><topic>Standard deviation</topic><topic>Statistics</topic><topic>Zero-defect probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chin-Shang</creatorcontrib><creatorcontrib>Lu, Jye-Chyi</creatorcontrib><creatorcontrib>Park, Jinho</creatorcontrib><creatorcontrib>Kim, Kyungmoo</creatorcontrib><creatorcontrib>Brinkley, Paul A.</creatorcontrib><creatorcontrib>Peterson, John P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chin-Shang</au><au>Lu, Jye-Chyi</au><au>Park, Jinho</au><au>Kim, Kyungmoo</au><au>Brinkley, Paul A.</au><au>Peterson, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Zero-Inflated Poisson Models and Their Applications</atitle><jtitle>Technometrics</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>41</volume><issue>1</issue><spage>29</spage><epage>38</epage><pages>29-38</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00401706.1999.10485593</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 1999-02, Vol.41 (1), p.29-38 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_pascalfrancis_primary_1648250 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Applications Binomials Confidence interval Estimation bias Estimation methods Exact sciences and technology Mathematics Maximum likelihood Maximum likelihood estimation Mixture distribution Modeling Multivariate analysis Multivariate Bernoulli Multivariate Poisson P values Parametric models Probabilities Probability and statistics Quality control Reliability, life testing, quality control Sciences and techniques of general use Standard deviation Statistics Zero-defect probability |
title | Multivariate Zero-Inflated Poisson Models and Their Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Zero-Inflated%20Poisson%20Models%20and%20Their%20Applications&rft.jtitle=Technometrics&rft.au=Li,%20Chin-Shang&rft.date=1999-02-01&rft.volume=41&rft.issue=1&rft.spage=29&rft.epage=38&rft.pages=29-38&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1999.10485593&rft_dat=%3Cjstor_pasca%3E1270992%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213680173&rft_id=info:pmid/&rft_jstor_id=1270992&rfr_iscdi=true |