A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree
This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship betwee...
Gespeichert in:
Veröffentlicht in: | Technometrics 2005-02, Vol.47 (1), p.23-33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Technometrics |
container_volume | 47 |
creator | Guttman, Irwin Peña, Daniel Redondas, Dolores |
description | This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data. |
doi_str_mv | 10.1198/004017004000000581 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16468297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25470931</jstor_id><sourcerecordid>25470931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</originalsourceid><addsrcrecordid>eNp9UFtLwzAYDaLgnP4BQQiCj9Vc2qZ58GHOKwgb4vCxZFmyZXbJTDpG_72pnfogGPgS-M4lhwPAKUaXGPPiCqEUYdbeXycr8B7o4YyyhDBC90GvhZLIyA_BUQhLhDAlBeuB0QDeiEYFIywcrNfeCbmA2nk49mpmZG3sHL6ZegHHrmqsWxlRwRc19yoE4yx0Gk7su3VbC2_brToGB1pUQZ3s3j6Y3N-9Dh-T59HD03DwnMiUpHXClM55WtAsozzDhVAzyTiSSDMkuVIoJSzXtMgl1ySdsTh8SnKMmIoCNWW0D8473xj5Y6NCXS7dxtv4ZUkwZbEMmkcS6UjSuxC80uXam5XwTYlR2fZW_u0tii52ziJIUWkvrDThV5mneUF4m-Cs4y1D7fwPTrKUIU5bn-sONzb2uRJb56tZWYumcv7blP6T4xM3YYeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213701736</pqid></control><display><type>article</type><title>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Guttman, Irwin ; Peña, Daniel ; Redondas, Dolores</creator><creatorcontrib>Guttman, Irwin ; Peña, Daniel ; Redondas, Dolores</creatorcontrib><description>This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1198/004017004000000581</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor & Francis</publisher><subject>Approximation ; Bayes information criterion ; Bayesian analysis ; Bayesian model averaging ; Bayesian networks ; Binomials ; Degrees of polynomials ; Exact sciences and technology ; Forecasting models ; Fractional bayes factor ; Intrinsic bayes factor ; Linear inference, regression ; Mathematics ; Modeling ; Musical intervals ; Polynomials ; Predictive modeling ; Probabilities ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistical analysis ; Statistical methods ; Statistics</subject><ispartof>Technometrics, 2005-02, Vol.47 (1), p.23-33</ispartof><rights>American Statistical Association and the American Society for Quality 2005</rights><rights>Copyright 2005 The American Statistical Association and The American Society for Quality</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Society for Quality Feb 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</citedby><cites>FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25470931$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25470931$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16468297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guttman, Irwin</creatorcontrib><creatorcontrib>Peña, Daniel</creatorcontrib><creatorcontrib>Redondas, Dolores</creatorcontrib><title>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</title><title>Technometrics</title><description>This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.</description><subject>Approximation</subject><subject>Bayes information criterion</subject><subject>Bayesian analysis</subject><subject>Bayesian model averaging</subject><subject>Bayesian networks</subject><subject>Binomials</subject><subject>Degrees of polynomials</subject><subject>Exact sciences and technology</subject><subject>Forecasting models</subject><subject>Fractional bayes factor</subject><subject>Intrinsic bayes factor</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Polynomials</subject><subject>Predictive modeling</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UFtLwzAYDaLgnP4BQQiCj9Vc2qZ58GHOKwgb4vCxZFmyZXbJTDpG_72pnfogGPgS-M4lhwPAKUaXGPPiCqEUYdbeXycr8B7o4YyyhDBC90GvhZLIyA_BUQhLhDAlBeuB0QDeiEYFIywcrNfeCbmA2nk49mpmZG3sHL6ZegHHrmqsWxlRwRc19yoE4yx0Gk7su3VbC2_brToGB1pUQZ3s3j6Y3N-9Dh-T59HD03DwnMiUpHXClM55WtAsozzDhVAzyTiSSDMkuVIoJSzXtMgl1ySdsTh8SnKMmIoCNWW0D8473xj5Y6NCXS7dxtv4ZUkwZbEMmkcS6UjSuxC80uXam5XwTYlR2fZW_u0tii52ziJIUWkvrDThV5mneUF4m-Cs4y1D7fwPTrKUIU5bn-sONzb2uRJb56tZWYumcv7blP6T4xM3YYeA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Guttman, Irwin</creator><creator>Peña, Daniel</creator><creator>Redondas, Dolores</creator><general>Taylor & Francis</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20050201</creationdate><title>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</title><author>Guttman, Irwin ; Peña, Daniel ; Redondas, Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Bayes information criterion</topic><topic>Bayesian analysis</topic><topic>Bayesian model averaging</topic><topic>Bayesian networks</topic><topic>Binomials</topic><topic>Degrees of polynomials</topic><topic>Exact sciences and technology</topic><topic>Forecasting models</topic><topic>Fractional bayes factor</topic><topic>Intrinsic bayes factor</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Polynomials</topic><topic>Predictive modeling</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guttman, Irwin</creatorcontrib><creatorcontrib>Peña, Daniel</creatorcontrib><creatorcontrib>Redondas, Dolores</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guttman, Irwin</au><au>Peña, Daniel</au><au>Redondas, Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</atitle><jtitle>Technometrics</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>47</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor & Francis</pub><doi>10.1198/004017004000000581</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2005-02, Vol.47 (1), p.23-33 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_pascalfrancis_primary_16468297 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Approximation Bayes information criterion Bayesian analysis Bayesian model averaging Bayesian networks Binomials Degrees of polynomials Exact sciences and technology Forecasting models Fractional bayes factor Intrinsic bayes factor Linear inference, regression Mathematics Modeling Musical intervals Polynomials Predictive modeling Probabilities Probability and statistics Regression analysis Sciences and techniques of general use Statistical analysis Statistical methods Statistics |
title | A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20for%20Predicting%20With%20Polynomial%20Regression%20of%20Unknown%20Degree&rft.jtitle=Technometrics&rft.au=Guttman,%20Irwin&rft.date=2005-02-01&rft.volume=47&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1198/004017004000000581&rft_dat=%3Cjstor_pasca%3E25470931%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213701736&rft_id=info:pmid/&rft_jstor_id=25470931&rfr_iscdi=true |