A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree

This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2005-02, Vol.47 (1), p.23-33
Hauptverfasser: Guttman, Irwin, Peña, Daniel, Redondas, Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 23
container_title Technometrics
container_volume 47
creator Guttman, Irwin
Peña, Daniel
Redondas, Dolores
description This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.
doi_str_mv 10.1198/004017004000000581
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16468297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25470931</jstor_id><sourcerecordid>25470931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</originalsourceid><addsrcrecordid>eNp9UFtLwzAYDaLgnP4BQQiCj9Vc2qZ58GHOKwgb4vCxZFmyZXbJTDpG_72pnfogGPgS-M4lhwPAKUaXGPPiCqEUYdbeXycr8B7o4YyyhDBC90GvhZLIyA_BUQhLhDAlBeuB0QDeiEYFIywcrNfeCbmA2nk49mpmZG3sHL6ZegHHrmqsWxlRwRc19yoE4yx0Gk7su3VbC2_brToGB1pUQZ3s3j6Y3N-9Dh-T59HD03DwnMiUpHXClM55WtAsozzDhVAzyTiSSDMkuVIoJSzXtMgl1ySdsTh8SnKMmIoCNWW0D8473xj5Y6NCXS7dxtv4ZUkwZbEMmkcS6UjSuxC80uXam5XwTYlR2fZW_u0tii52ziJIUWkvrDThV5mneUF4m-Cs4y1D7fwPTrKUIU5bn-sONzb2uRJb56tZWYumcv7blP6T4xM3YYeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213701736</pqid></control><display><type>article</type><title>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Guttman, Irwin ; Peña, Daniel ; Redondas, Dolores</creator><creatorcontrib>Guttman, Irwin ; Peña, Daniel ; Redondas, Dolores</creatorcontrib><description>This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1198/004017004000000581</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis</publisher><subject>Approximation ; Bayes information criterion ; Bayesian analysis ; Bayesian model averaging ; Bayesian networks ; Binomials ; Degrees of polynomials ; Exact sciences and technology ; Forecasting models ; Fractional bayes factor ; Intrinsic bayes factor ; Linear inference, regression ; Mathematics ; Modeling ; Musical intervals ; Polynomials ; Predictive modeling ; Probabilities ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistical analysis ; Statistical methods ; Statistics</subject><ispartof>Technometrics, 2005-02, Vol.47 (1), p.23-33</ispartof><rights>American Statistical Association and the American Society for Quality 2005</rights><rights>Copyright 2005 The American Statistical Association and The American Society for Quality</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Society for Quality Feb 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</citedby><cites>FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25470931$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25470931$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16468297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guttman, Irwin</creatorcontrib><creatorcontrib>Peña, Daniel</creatorcontrib><creatorcontrib>Redondas, Dolores</creatorcontrib><title>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</title><title>Technometrics</title><description>This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.</description><subject>Approximation</subject><subject>Bayes information criterion</subject><subject>Bayesian analysis</subject><subject>Bayesian model averaging</subject><subject>Bayesian networks</subject><subject>Binomials</subject><subject>Degrees of polynomials</subject><subject>Exact sciences and technology</subject><subject>Forecasting models</subject><subject>Fractional bayes factor</subject><subject>Intrinsic bayes factor</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Polynomials</subject><subject>Predictive modeling</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UFtLwzAYDaLgnP4BQQiCj9Vc2qZ58GHOKwgb4vCxZFmyZXbJTDpG_72pnfogGPgS-M4lhwPAKUaXGPPiCqEUYdbeXycr8B7o4YyyhDBC90GvhZLIyA_BUQhLhDAlBeuB0QDeiEYFIywcrNfeCbmA2nk49mpmZG3sHL6ZegHHrmqsWxlRwRc19yoE4yx0Gk7su3VbC2_brToGB1pUQZ3s3j6Y3N-9Dh-T59HD03DwnMiUpHXClM55WtAsozzDhVAzyTiSSDMkuVIoJSzXtMgl1ySdsTh8SnKMmIoCNWW0D8473xj5Y6NCXS7dxtv4ZUkwZbEMmkcS6UjSuxC80uXam5XwTYlR2fZW_u0tii52ziJIUWkvrDThV5mneUF4m-Cs4y1D7fwPTrKUIU5bn-sONzb2uRJb56tZWYumcv7blP6T4xM3YYeA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Guttman, Irwin</creator><creator>Peña, Daniel</creator><creator>Redondas, Dolores</creator><general>Taylor &amp; Francis</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20050201</creationdate><title>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</title><author>Guttman, Irwin ; Peña, Daniel ; Redondas, Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7ef694835539518aedc790c0f70c9ee04276f386c9f24d724d9b26107e539eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Bayes information criterion</topic><topic>Bayesian analysis</topic><topic>Bayesian model averaging</topic><topic>Bayesian networks</topic><topic>Binomials</topic><topic>Degrees of polynomials</topic><topic>Exact sciences and technology</topic><topic>Forecasting models</topic><topic>Fractional bayes factor</topic><topic>Intrinsic bayes factor</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Polynomials</topic><topic>Predictive modeling</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guttman, Irwin</creatorcontrib><creatorcontrib>Peña, Daniel</creatorcontrib><creatorcontrib>Redondas, Dolores</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guttman, Irwin</au><au>Peña, Daniel</au><au>Redondas, Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree</atitle><jtitle>Technometrics</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>47</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>This article compares three methods for computing the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures is illustrated with simulations and some known engineering data.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/004017004000000581</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2005-02, Vol.47 (1), p.23-33
issn 0040-1706
1537-2723
language eng
recordid cdi_pascalfrancis_primary_16468297
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Approximation
Bayes information criterion
Bayesian analysis
Bayesian model averaging
Bayesian networks
Binomials
Degrees of polynomials
Exact sciences and technology
Forecasting models
Fractional bayes factor
Intrinsic bayes factor
Linear inference, regression
Mathematics
Modeling
Musical intervals
Polynomials
Predictive modeling
Probabilities
Probability and statistics
Regression analysis
Sciences and techniques of general use
Statistical analysis
Statistical methods
Statistics
title A Bayesian Approach for Predicting With Polynomial Regression of Unknown Degree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20for%20Predicting%20With%20Polynomial%20Regression%20of%20Unknown%20Degree&rft.jtitle=Technometrics&rft.au=Guttman,%20Irwin&rft.date=2005-02-01&rft.volume=47&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1198/004017004000000581&rft_dat=%3Cjstor_pasca%3E25470931%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213701736&rft_id=info:pmid/&rft_jstor_id=25470931&rfr_iscdi=true