Nanoscale FinFETs with gate-source/drain underlap

Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2005-01, Vol.52 (1), p.56-62
Hauptverfasser: Trivedi, V., Fossum, J.G., Chowdhury, M.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 56
container_title IEEE transactions on electron devices
container_volume 52
creator Trivedi, V.
Fossum, J.G.
Chowdhury, M.M.
description Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.
doi_str_mv 10.1109/TED.2004.841333
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_16447161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1372708</ieee_id><sourcerecordid>16447161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</originalsourceid><addsrcrecordid>eNpFjzFPwzAQhS0EEqEwM7BkYUzis53YHlFpAamCpczWNbEhKCSRnQrx73EUpC53Or337u4j5BZoDkB1sd885oxSkSsBnPMzkkBZykxXojonCaWgMs0VvyRXIXzFsRKCJQResR9CjZ1Nt22_3exD-tNOn-kHTjYLw9HXtmg8tn167BvrOxyvyYXDLtib_74i7zG2fs52b08v64ddVjMNU4bzBRULR8UoMEDXOHfQjDmlXfxMs1JZKa2KSi1cxUpe6oaCkAeBVclXpFj21n4IwVtnRt9-o_81QM1MbCKxmYnNQhwT90tixJnIeezrNpxikVhCBdF3t_haa-1J5pJJqvgfDmVcpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale FinFETs with gate-source/drain underlap</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Trivedi, V. ; Fossum, J.G. ; Chowdhury, M.M.</creator><creatorcontrib>Trivedi, V. ; Fossum, J.G. ; Chowdhury, M.M.</creatorcontrib><description>Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2004.841333</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Design. Technologies. Operation analysis. Testing ; Effective channel length ; Electronics ; Exact sciences and technology ; FinFETs ; Integrated circuits ; Leakage currents ; Molecular electronics, nanoelectronics ; MOSFETs ; nanoscale CMOS devices ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; source/drain extensions ; Transistors ; underlap</subject><ispartof>IEEE transactions on electron devices, 2005-01, Vol.52 (1), p.56-62</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</citedby><cites>FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1372708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1372708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16447161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Trivedi, V.</creatorcontrib><creatorcontrib>Fossum, J.G.</creatorcontrib><creatorcontrib>Chowdhury, M.M.</creatorcontrib><title>Nanoscale FinFETs with gate-source/drain underlap</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.</description><subject>Applied sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Effective channel length</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>FinFETs</subject><subject>Integrated circuits</subject><subject>Leakage currents</subject><subject>Molecular electronics, nanoelectronics</subject><subject>MOSFETs</subject><subject>nanoscale CMOS devices</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>source/drain extensions</subject><subject>Transistors</subject><subject>underlap</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFjzFPwzAQhS0EEqEwM7BkYUzis53YHlFpAamCpczWNbEhKCSRnQrx73EUpC53Or337u4j5BZoDkB1sd885oxSkSsBnPMzkkBZykxXojonCaWgMs0VvyRXIXzFsRKCJQResR9CjZ1Nt22_3exD-tNOn-kHTjYLw9HXtmg8tn167BvrOxyvyYXDLtib_74i7zG2fs52b08v64ddVjMNU4bzBRULR8UoMEDXOHfQjDmlXfxMs1JZKa2KSi1cxUpe6oaCkAeBVclXpFj21n4IwVtnRt9-o_81QM1MbCKxmYnNQhwT90tixJnIeezrNpxikVhCBdF3t_haa-1J5pJJqvgfDmVcpw</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Trivedi, V.</creator><creator>Fossum, J.G.</creator><creator>Chowdhury, M.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200501</creationdate><title>Nanoscale FinFETs with gate-source/drain underlap</title><author>Trivedi, V. ; Fossum, J.G. ; Chowdhury, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Effective channel length</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>FinFETs</topic><topic>Integrated circuits</topic><topic>Leakage currents</topic><topic>Molecular electronics, nanoelectronics</topic><topic>MOSFETs</topic><topic>nanoscale CMOS devices</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>source/drain extensions</topic><topic>Transistors</topic><topic>underlap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, V.</creatorcontrib><creatorcontrib>Fossum, J.G.</creatorcontrib><creatorcontrib>Chowdhury, M.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trivedi, V.</au><au>Fossum, J.G.</au><au>Chowdhury, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale FinFETs with gate-source/drain underlap</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2005-01</date><risdate>2005</risdate><volume>52</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2004.841333</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2005-01, Vol.52 (1), p.56-62
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_16447161
source IEEE/IET Electronic Library (IEL)
subjects Applied sciences
Design. Technologies. Operation analysis. Testing
Effective channel length
Electronics
Exact sciences and technology
FinFETs
Integrated circuits
Leakage currents
Molecular electronics, nanoelectronics
MOSFETs
nanoscale CMOS devices
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
source/drain extensions
Transistors
underlap
title Nanoscale FinFETs with gate-source/drain underlap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20FinFETs%20with%20gate-source/drain%20underlap&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Trivedi,%20V.&rft.date=2005-01&rft.volume=52&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2004.841333&rft_dat=%3Cpascalfrancis_RIE%3E16447161%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1372708&rfr_iscdi=true