Nanoscale FinFETs with gate-source/drain underlap
Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2005-01, Vol.52 (1), p.56-62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | IEEE transactions on electron devices |
container_volume | 52 |
creator | Trivedi, V. Fossum, J.G. Chowdhury, M.M. |
description | Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current. |
doi_str_mv | 10.1109/TED.2004.841333 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_16447161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1372708</ieee_id><sourcerecordid>16447161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</originalsourceid><addsrcrecordid>eNpFjzFPwzAQhS0EEqEwM7BkYUzis53YHlFpAamCpczWNbEhKCSRnQrx73EUpC53Or337u4j5BZoDkB1sd885oxSkSsBnPMzkkBZykxXojonCaWgMs0VvyRXIXzFsRKCJQResR9CjZ1Nt22_3exD-tNOn-kHTjYLw9HXtmg8tn167BvrOxyvyYXDLtib_74i7zG2fs52b08v64ddVjMNU4bzBRULR8UoMEDXOHfQjDmlXfxMs1JZKa2KSi1cxUpe6oaCkAeBVclXpFj21n4IwVtnRt9-o_81QM1MbCKxmYnNQhwT90tixJnIeezrNpxikVhCBdF3t_haa-1J5pJJqvgfDmVcpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale FinFETs with gate-source/drain underlap</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Trivedi, V. ; Fossum, J.G. ; Chowdhury, M.M.</creator><creatorcontrib>Trivedi, V. ; Fossum, J.G. ; Chowdhury, M.M.</creatorcontrib><description>Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2004.841333</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Design. Technologies. Operation analysis. Testing ; Effective channel length ; Electronics ; Exact sciences and technology ; FinFETs ; Integrated circuits ; Leakage currents ; Molecular electronics, nanoelectronics ; MOSFETs ; nanoscale CMOS devices ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; source/drain extensions ; Transistors ; underlap</subject><ispartof>IEEE transactions on electron devices, 2005-01, Vol.52 (1), p.56-62</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</citedby><cites>FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1372708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1372708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16447161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Trivedi, V.</creatorcontrib><creatorcontrib>Fossum, J.G.</creatorcontrib><creatorcontrib>Chowdhury, M.M.</creatorcontrib><title>Nanoscale FinFETs with gate-source/drain underlap</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.</description><subject>Applied sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Effective channel length</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>FinFETs</subject><subject>Integrated circuits</subject><subject>Leakage currents</subject><subject>Molecular electronics, nanoelectronics</subject><subject>MOSFETs</subject><subject>nanoscale CMOS devices</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>source/drain extensions</subject><subject>Transistors</subject><subject>underlap</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFjzFPwzAQhS0EEqEwM7BkYUzis53YHlFpAamCpczWNbEhKCSRnQrx73EUpC53Or337u4j5BZoDkB1sd885oxSkSsBnPMzkkBZykxXojonCaWgMs0VvyRXIXzFsRKCJQResR9CjZ1Nt22_3exD-tNOn-kHTjYLw9HXtmg8tn167BvrOxyvyYXDLtib_74i7zG2fs52b08v64ddVjMNU4bzBRULR8UoMEDXOHfQjDmlXfxMs1JZKa2KSi1cxUpe6oaCkAeBVclXpFj21n4IwVtnRt9-o_81QM1MbCKxmYnNQhwT90tixJnIeezrNpxikVhCBdF3t_haa-1J5pJJqvgfDmVcpw</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Trivedi, V.</creator><creator>Fossum, J.G.</creator><creator>Chowdhury, M.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200501</creationdate><title>Nanoscale FinFETs with gate-source/drain underlap</title><author>Trivedi, V. ; Fossum, J.G. ; Chowdhury, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a016480163a820121afdffb922f89f5579258e77e81afc4f625359d0147b4a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Effective channel length</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>FinFETs</topic><topic>Integrated circuits</topic><topic>Leakage currents</topic><topic>Molecular electronics, nanoelectronics</topic><topic>MOSFETs</topic><topic>nanoscale CMOS devices</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>source/drain extensions</topic><topic>Transistors</topic><topic>underlap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, V.</creatorcontrib><creatorcontrib>Fossum, J.G.</creatorcontrib><creatorcontrib>Chowdhury, M.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trivedi, V.</au><au>Fossum, J.G.</au><au>Chowdhury, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale FinFETs with gate-source/drain underlap</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2005-01</date><risdate>2005</risdate><volume>52</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2004.841333</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2005-01, Vol.52 (1), p.56-62 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_16447161 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Applied sciences Design. Technologies. Operation analysis. Testing Effective channel length Electronics Exact sciences and technology FinFETs Integrated circuits Leakage currents Molecular electronics, nanoelectronics MOSFETs nanoscale CMOS devices Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices source/drain extensions Transistors underlap |
title | Nanoscale FinFETs with gate-source/drain underlap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20FinFETs%20with%20gate-source/drain%20underlap&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Trivedi,%20V.&rft.date=2005-01&rft.volume=52&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2004.841333&rft_dat=%3Cpascalfrancis_RIE%3E16447161%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1372708&rfr_iscdi=true |