Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse

Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2004-12, Vol.617 (1), p.360-383
Hauptverfasser: Lee, Jeong-Eun, Bergin, Edwin A, Evans II, Neal J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 1
container_start_page 360
container_title The Astrophysical journal
container_volume 617
creator Lee, Jeong-Eun
Bergin, Edwin A
Evans II, Neal J
description Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.
doi_str_mv 10.1086/425153
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_pascalfrancis_primary_16387301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17314272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</originalsourceid><addsrcrecordid>eNp1kUtLw0AUhQdRsFb9DXGhCyF659GZZCmhPqBSFwruhuk8dCTNxJlE6L83oYUuxM19wHcPh3MROsdwg6Hgt4zM8IweoMlQi5zRmThEEwBgOafi_RidpPQ1rqQsJ2g5_wl13_nQZMFl1add-9TFTaYakz2H2uq-VjFb-MZmLzE4X9uUmT765mPcu5A6W49EFYbWJnuKjpyqkz3b9Sl6u5-_Vo_5YvnwVN0tcs0Y7XKiGMHOOQNixclKG74iYBzRDHBZgCECtBaiYFjQgoLhVLlh4FTbQkOp6RRdbXXbGL57mzo5GNejl8aGPsnhDjMiyB7UMaQUrZNt9GsVNxKDHPOS27wG8HKnqJJWtYuq0T7taU4LQQEP3MWW86H9X-v6LzNmLscXSI6FxJJykK1x9Bea_YC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17314272</pqid></control><display><type>article</type><title>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</title><source>IOP Publishing Free Content</source><creator>Lee, Jeong-Eun ; Bergin, Edwin A ; Evans II, Neal J</creator><creatorcontrib>Lee, Jeong-Eun ; Bergin, Edwin A ; Evans II, Neal J</creatorcontrib><description>Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/425153</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Star formation ; Stars ; Stellar characteristics and properties</subject><ispartof>The Astrophysical journal, 2004-12, Vol.617 (1), p.360-383</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</citedby><cites>FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/425153/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27627,27923,27924,53930</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/617/1/360$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16387301$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Bergin, Edwin A</creatorcontrib><creatorcontrib>Evans II, Neal J</creatorcontrib><title>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</title><title>The Astrophysical journal</title><description>Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Star formation</subject><subject>Stars</subject><subject>Stellar characteristics and properties</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLw0AUhQdRsFb9DXGhCyF659GZZCmhPqBSFwruhuk8dCTNxJlE6L83oYUuxM19wHcPh3MROsdwg6Hgt4zM8IweoMlQi5zRmThEEwBgOafi_RidpPQ1rqQsJ2g5_wl13_nQZMFl1add-9TFTaYakz2H2uq-VjFb-MZmLzE4X9uUmT765mPcu5A6W49EFYbWJnuKjpyqkz3b9Sl6u5-_Vo_5YvnwVN0tcs0Y7XKiGMHOOQNixclKG74iYBzRDHBZgCECtBaiYFjQgoLhVLlh4FTbQkOp6RRdbXXbGL57mzo5GNejl8aGPsnhDjMiyB7UMaQUrZNt9GsVNxKDHPOS27wG8HKnqJJWtYuq0T7taU4LQQEP3MWW86H9X-v6LzNmLscXSI6FxJJykK1x9Bea_YC4</recordid><startdate>20041210</startdate><enddate>20041210</enddate><creator>Lee, Jeong-Eun</creator><creator>Bergin, Edwin A</creator><creator>Evans II, Neal J</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20041210</creationdate><title>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</title><author>Lee, Jeong-Eun ; Bergin, Edwin A ; Evans II, Neal J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Star formation</topic><topic>Stars</topic><topic>Stellar characteristics and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Bergin, Edwin A</creatorcontrib><creatorcontrib>Evans II, Neal J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Jeong-Eun</au><au>Bergin, Edwin A</au><au>Evans II, Neal J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</atitle><jtitle>The Astrophysical journal</jtitle><date>2004-12-10</date><risdate>2004</risdate><volume>617</volume><issue>1</issue><spage>360</spage><epage>383</epage><pages>360-383</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/425153</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2004-12, Vol.617 (1), p.360-383
issn 0004-637X
1538-4357
language eng
recordid cdi_pascalfrancis_primary_16387301
source IOP Publishing Free Content
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
Star formation
Stars
Stellar characteristics and properties
title Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Chemistry%20and%20Molecular%20Line%20Profiles%20during%20Protostellar%20Collapse&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lee,%20Jeong-Eun&rft.date=2004-12-10&rft.volume=617&rft.issue=1&rft.spage=360&rft.epage=383&rft.pages=360-383&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/425153&rft_dat=%3Cproquest_O3W%3E17314272%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17314272&rft_id=info:pmid/&rfr_iscdi=true