Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse
Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent tre...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2004-12, Vol.617 (1), p.360-383 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 1 |
container_start_page | 360 |
container_title | The Astrophysical journal |
container_volume | 617 |
creator | Lee, Jeong-Eun Bergin, Edwin A Evans II, Neal J |
description | Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages. |
doi_str_mv | 10.1086/425153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_pascalfrancis_primary_16387301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17314272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</originalsourceid><addsrcrecordid>eNp1kUtLw0AUhQdRsFb9DXGhCyF659GZZCmhPqBSFwruhuk8dCTNxJlE6L83oYUuxM19wHcPh3MROsdwg6Hgt4zM8IweoMlQi5zRmThEEwBgOafi_RidpPQ1rqQsJ2g5_wl13_nQZMFl1add-9TFTaYakz2H2uq-VjFb-MZmLzE4X9uUmT765mPcu5A6W49EFYbWJnuKjpyqkz3b9Sl6u5-_Vo_5YvnwVN0tcs0Y7XKiGMHOOQNixclKG74iYBzRDHBZgCECtBaiYFjQgoLhVLlh4FTbQkOp6RRdbXXbGL57mzo5GNejl8aGPsnhDjMiyB7UMaQUrZNt9GsVNxKDHPOS27wG8HKnqJJWtYuq0T7taU4LQQEP3MWW86H9X-v6LzNmLscXSI6FxJJykK1x9Bea_YC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17314272</pqid></control><display><type>article</type><title>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</title><source>IOP Publishing Free Content</source><creator>Lee, Jeong-Eun ; Bergin, Edwin A ; Evans II, Neal J</creator><creatorcontrib>Lee, Jeong-Eun ; Bergin, Edwin A ; Evans II, Neal J</creatorcontrib><description>Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/425153</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Star formation ; Stars ; Stellar characteristics and properties</subject><ispartof>The Astrophysical journal, 2004-12, Vol.617 (1), p.360-383</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</citedby><cites>FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/425153/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27627,27923,27924,53930</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/617/1/360$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16387301$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Bergin, Edwin A</creatorcontrib><creatorcontrib>Evans II, Neal J</creatorcontrib><title>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</title><title>The Astrophysical journal</title><description>Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Star formation</subject><subject>Stars</subject><subject>Stellar characteristics and properties</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLw0AUhQdRsFb9DXGhCyF659GZZCmhPqBSFwruhuk8dCTNxJlE6L83oYUuxM19wHcPh3MROsdwg6Hgt4zM8IweoMlQi5zRmThEEwBgOafi_RidpPQ1rqQsJ2g5_wl13_nQZMFl1add-9TFTaYakz2H2uq-VjFb-MZmLzE4X9uUmT765mPcu5A6W49EFYbWJnuKjpyqkz3b9Sl6u5-_Vo_5YvnwVN0tcs0Y7XKiGMHOOQNixclKG74iYBzRDHBZgCECtBaiYFjQgoLhVLlh4FTbQkOp6RRdbXXbGL57mzo5GNejl8aGPsnhDjMiyB7UMaQUrZNt9GsVNxKDHPOS27wG8HKnqJJWtYuq0T7taU4LQQEP3MWW86H9X-v6LzNmLscXSI6FxJJykK1x9Bea_YC4</recordid><startdate>20041210</startdate><enddate>20041210</enddate><creator>Lee, Jeong-Eun</creator><creator>Bergin, Edwin A</creator><creator>Evans II, Neal J</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20041210</creationdate><title>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</title><author>Lee, Jeong-Eun ; Bergin, Edwin A ; Evans II, Neal J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2a421fffd07b62bcd6b20df2c401980d270cc7784173830d63af38363ce8c09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Star formation</topic><topic>Stars</topic><topic>Stellar characteristics and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeong-Eun</creatorcontrib><creatorcontrib>Bergin, Edwin A</creatorcontrib><creatorcontrib>Evans II, Neal J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Jeong-Eun</au><au>Bergin, Edwin A</au><au>Evans II, Neal J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse</atitle><jtitle>The Astrophysical journal</jtitle><date>2004-12-10</date><risdate>2004</risdate><volume>617</volume><issue>1</issue><spage>360</spage><epage>383</epage><pages>360-383</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>Understanding the chemical evolution in star-forming cores is a necessary precondition to correctly assessing physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing because of both the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freezeout and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission-line profiles. Multitransition and multiposition observations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/425153</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2004-12, Vol.617 (1), p.360-383 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_pascalfrancis_primary_16387301 |
source | IOP Publishing Free Content |
subjects | Astronomy Earth, ocean, space Exact sciences and technology Star formation Stars Stellar characteristics and properties |
title | Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Chemistry%20and%20Molecular%20Line%20Profiles%20during%20Protostellar%20Collapse&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lee,%20Jeong-Eun&rft.date=2004-12-10&rft.volume=617&rft.issue=1&rft.spage=360&rft.epage=383&rft.pages=360-383&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/425153&rft_dat=%3Cproquest_O3W%3E17314272%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17314272&rft_id=info:pmid/&rfr_iscdi=true |