Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy
The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for...
Gespeichert in:
Veröffentlicht in: | Algorithms and Computation 2004-01, p.271-281 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | |
container_start_page | 271 |
container_title | Algorithms and Computation |
container_volume | |
creator | Chen, Danny Z. Hu, Xiaobo S. Luan, Shuang Naqvi, Shahid A. Wang, Chao Yu, Cedric X. |
description | The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented. |
doi_str_mv | 10.1007/978-3-540-30551-4_25 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16368730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16368730</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-c38677f2a490734de8370c284dd8999dbfaaa0e5d3fe9bad8b7bd4b300f6aeb3</originalsourceid><addsrcrecordid>eNotkE9PAyEQxfFfYq39Bh64eESBYRc4No1Wkyaa2jthF2hXt7sr1EP99NLWmcMk7728TH4I3TH6wCiVj1oqAqQQlAAtCkaE4cUZuoGsHAU4RyNWMkYAhL5Ak5w_eFwwYPISjXKKEy0FXKNJSp80D8ur9Agt577z0bbNr3d47vut38WmxtNhiL2tNz7h0Ee88DbgD__947u66db4PfZV67cJNx1eWtfYXdN3eLXJTcP-Fl0F2yY_-b9jtHp-Ws1eyOJt_jqbLsjAudqRGlQpZeBWaCpBOK9A0por4ZzSWrsqWGupLxwEryvrVCUrJyqgNJTWVzBG96fawabatiHa_FsyQ2y2Nu4NK6FUEmjO8VMuZatb-2iqvv9KhlFzgGsyLAMm4zJHluYAF_4AgK5oyA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</title><source>Springer Books</source><creator>Chen, Danny Z. ; Hu, Xiaobo S. ; Luan, Shuang ; Naqvi, Shahid A. ; Wang, Chao ; Yu, Cedric X.</creator><contributor>Trippen, Gerhard ; Fleischer, Rudolf</contributor><creatorcontrib>Chen, Danny Z. ; Hu, Xiaobo S. ; Luan, Shuang ; Naqvi, Shahid A. ; Wang, Chao ; Yu, Cedric X. ; Trippen, Gerhard ; Fleischer, Rudolf</creatorcontrib><description>The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540241317</identifier><identifier>ISBN: 3540241310</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540305513</identifier><identifier>EISBN: 9783540305514</identifier><identifier>DOI: 10.1007/978-3-540-30551-4_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Error Control ; Exact sciences and technology ; Groove Side ; Leakage Error ; Multileaf Collimator ; Real Medical Data ; Theoretical computing</subject><ispartof>Algorithms and Computation, 2004-01, p.271-281</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30551-4_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30551-4_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16368730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trippen, Gerhard</contributor><contributor>Fleischer, Rudolf</contributor><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, Xiaobo S.</creatorcontrib><creatorcontrib>Luan, Shuang</creatorcontrib><creatorcontrib>Naqvi, Shahid A.</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Yu, Cedric X.</creatorcontrib><title>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</title><title>Algorithms and Computation</title><description>The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Error Control</subject><subject>Exact sciences and technology</subject><subject>Groove Side</subject><subject>Leakage Error</subject><subject>Multileaf Collimator</subject><subject>Real Medical Data</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540241317</isbn><isbn>3540241310</isbn><isbn>3540305513</isbn><isbn>9783540305514</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE9PAyEQxfFfYq39Bh64eESBYRc4No1Wkyaa2jthF2hXt7sr1EP99NLWmcMk7728TH4I3TH6wCiVj1oqAqQQlAAtCkaE4cUZuoGsHAU4RyNWMkYAhL5Ak5w_eFwwYPISjXKKEy0FXKNJSp80D8ur9Agt577z0bbNr3d47vut38WmxtNhiL2tNz7h0Ee88DbgD__947u66db4PfZV67cJNx1eWtfYXdN3eLXJTcP-Fl0F2yY_-b9jtHp-Ws1eyOJt_jqbLsjAudqRGlQpZeBWaCpBOK9A0por4ZzSWrsqWGupLxwEryvrVCUrJyqgNJTWVzBG96fawabatiHa_FsyQ2y2Nu4NK6FUEmjO8VMuZatb-2iqvv9KhlFzgGsyLAMm4zJHluYAF_4AgK5oyA</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Chen, Danny Z.</creator><creator>Hu, Xiaobo S.</creator><creator>Luan, Shuang</creator><creator>Naqvi, Shahid A.</creator><creator>Wang, Chao</creator><creator>Yu, Cedric X.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20040101</creationdate><title>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</title><author>Chen, Danny Z. ; Hu, Xiaobo S. ; Luan, Shuang ; Naqvi, Shahid A. ; Wang, Chao ; Yu, Cedric X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-c38677f2a490734de8370c284dd8999dbfaaa0e5d3fe9bad8b7bd4b300f6aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Error Control</topic><topic>Exact sciences and technology</topic><topic>Groove Side</topic><topic>Leakage Error</topic><topic>Multileaf Collimator</topic><topic>Real Medical Data</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, Xiaobo S.</creatorcontrib><creatorcontrib>Luan, Shuang</creatorcontrib><creatorcontrib>Naqvi, Shahid A.</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Yu, Cedric X.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Algorithms and Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Danny Z.</au><au>Hu, Xiaobo S.</au><au>Luan, Shuang</au><au>Naqvi, Shahid A.</au><au>Wang, Chao</au><au>Yu, Cedric X.</au><au>Trippen, Gerhard</au><au>Fleischer, Rudolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</atitle><jtitle>Algorithms and Computation</jtitle><date>2004-01-01</date><risdate>2004</risdate><spage>271</spage><epage>281</epage><pages>271-281</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540241317</isbn><isbn>3540241310</isbn><eisbn>3540305513</eisbn><eisbn>9783540305514</eisbn><abstract>The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30551-4_25</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithms and Computation, 2004-01, p.271-281 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16368730 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Error Control Exact sciences and technology Groove Side Leakage Error Multileaf Collimator Real Medical Data Theoretical computing |
title | Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Geometric%20Approaches%20for%20Leaf%20Sequencing%20Problems%20in%20Radiation%20Therapy&rft.jtitle=Algorithms%20and%20Computation&rft.au=Chen,%20Danny%20Z.&rft.date=2004-01-01&rft.spage=271&rft.epage=281&rft.pages=271-281&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540241317&rft.isbn_list=3540241310&rft_id=info:doi/10.1007/978-3-540-30551-4_25&rft_dat=%3Cpascalfrancis_sprin%3E16368730%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540305513&rft.eisbn_list=9783540305514&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |