Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy

The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms and Computation 2004-01, p.271-281
Hauptverfasser: Chen, Danny Z., Hu, Xiaobo S., Luan, Shuang, Naqvi, Shahid A., Wang, Chao, Yu, Cedric X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue
container_start_page 271
container_title Algorithms and Computation
container_volume
creator Chen, Danny Z.
Hu, Xiaobo S.
Luan, Shuang
Naqvi, Shahid A.
Wang, Chao
Yu, Cedric X.
description The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.
doi_str_mv 10.1007/978-3-540-30551-4_25
format Article
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16368730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16368730</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-c38677f2a490734de8370c284dd8999dbfaaa0e5d3fe9bad8b7bd4b300f6aeb3</originalsourceid><addsrcrecordid>eNotkE9PAyEQxfFfYq39Bh64eESBYRc4No1Wkyaa2jthF2hXt7sr1EP99NLWmcMk7728TH4I3TH6wCiVj1oqAqQQlAAtCkaE4cUZuoGsHAU4RyNWMkYAhL5Ak5w_eFwwYPISjXKKEy0FXKNJSp80D8ur9Agt577z0bbNr3d47vut38WmxtNhiL2tNz7h0Ee88DbgD__947u66db4PfZV67cJNx1eWtfYXdN3eLXJTcP-Fl0F2yY_-b9jtHp-Ws1eyOJt_jqbLsjAudqRGlQpZeBWaCpBOK9A0por4ZzSWrsqWGupLxwEryvrVCUrJyqgNJTWVzBG96fawabatiHa_FsyQ2y2Nu4NK6FUEmjO8VMuZatb-2iqvv9KhlFzgGsyLAMm4zJHluYAF_4AgK5oyA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</title><source>Springer Books</source><creator>Chen, Danny Z. ; Hu, Xiaobo S. ; Luan, Shuang ; Naqvi, Shahid A. ; Wang, Chao ; Yu, Cedric X.</creator><contributor>Trippen, Gerhard ; Fleischer, Rudolf</contributor><creatorcontrib>Chen, Danny Z. ; Hu, Xiaobo S. ; Luan, Shuang ; Naqvi, Shahid A. ; Wang, Chao ; Yu, Cedric X. ; Trippen, Gerhard ; Fleischer, Rudolf</creatorcontrib><description>The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540241317</identifier><identifier>ISBN: 3540241310</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540305513</identifier><identifier>EISBN: 9783540305514</identifier><identifier>DOI: 10.1007/978-3-540-30551-4_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Error Control ; Exact sciences and technology ; Groove Side ; Leakage Error ; Multileaf Collimator ; Real Medical Data ; Theoretical computing</subject><ispartof>Algorithms and Computation, 2004-01, p.271-281</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30551-4_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30551-4_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16368730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trippen, Gerhard</contributor><contributor>Fleischer, Rudolf</contributor><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, Xiaobo S.</creatorcontrib><creatorcontrib>Luan, Shuang</creatorcontrib><creatorcontrib>Naqvi, Shahid A.</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Yu, Cedric X.</creatorcontrib><title>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</title><title>Algorithms and Computation</title><description>The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Error Control</subject><subject>Exact sciences and technology</subject><subject>Groove Side</subject><subject>Leakage Error</subject><subject>Multileaf Collimator</subject><subject>Real Medical Data</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540241317</isbn><isbn>3540241310</isbn><isbn>3540305513</isbn><isbn>9783540305514</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE9PAyEQxfFfYq39Bh64eESBYRc4No1Wkyaa2jthF2hXt7sr1EP99NLWmcMk7728TH4I3TH6wCiVj1oqAqQQlAAtCkaE4cUZuoGsHAU4RyNWMkYAhL5Ak5w_eFwwYPISjXKKEy0FXKNJSp80D8ur9Agt577z0bbNr3d47vut38WmxtNhiL2tNz7h0Ee88DbgD__947u66db4PfZV67cJNx1eWtfYXdN3eLXJTcP-Fl0F2yY_-b9jtHp-Ws1eyOJt_jqbLsjAudqRGlQpZeBWaCpBOK9A0por4ZzSWrsqWGupLxwEryvrVCUrJyqgNJTWVzBG96fawabatiHa_FsyQ2y2Nu4NK6FUEmjO8VMuZatb-2iqvv9KhlFzgGsyLAMm4zJHluYAF_4AgK5oyA</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Chen, Danny Z.</creator><creator>Hu, Xiaobo S.</creator><creator>Luan, Shuang</creator><creator>Naqvi, Shahid A.</creator><creator>Wang, Chao</creator><creator>Yu, Cedric X.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20040101</creationdate><title>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</title><author>Chen, Danny Z. ; Hu, Xiaobo S. ; Luan, Shuang ; Naqvi, Shahid A. ; Wang, Chao ; Yu, Cedric X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-c38677f2a490734de8370c284dd8999dbfaaa0e5d3fe9bad8b7bd4b300f6aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Error Control</topic><topic>Exact sciences and technology</topic><topic>Groove Side</topic><topic>Leakage Error</topic><topic>Multileaf Collimator</topic><topic>Real Medical Data</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, Xiaobo S.</creatorcontrib><creatorcontrib>Luan, Shuang</creatorcontrib><creatorcontrib>Naqvi, Shahid A.</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Yu, Cedric X.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Algorithms and Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Danny Z.</au><au>Hu, Xiaobo S.</au><au>Luan, Shuang</au><au>Naqvi, Shahid A.</au><au>Wang, Chao</au><au>Yu, Cedric X.</au><au>Trippen, Gerhard</au><au>Fleischer, Rudolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy</atitle><jtitle>Algorithms and Computation</jtitle><date>2004-01-01</date><risdate>2004</risdate><spage>271</spage><epage>281</epage><pages>271-281</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540241317</isbn><isbn>3540241310</isbn><eisbn>3540305513</eisbn><eisbn>9783540305514</eisbn><abstract>The 3-D static leaf sequencing (SLS) problem arises in radiation therapy for cancer treatments, aiming to deliver a prescribed radiation dose to a target tumor accurately and efficiently. The treatment time and machine delivery error are two crucial factors of a solution (i.e., a treatment plan) for the SLS problem. In this paper, we prove that the 3-D SLS problem is NP-hard, and present the first ever algorithm for the 3-D SLS problem that can determine a tradeoff between the treatment time and machine delivery error (also called the “tongue-and-groove” error in medical literature). Our new 3-D SLS algorithm with error control gives the users (e.g., physicians) the option of specifying a machine delivery error bound, and subject to the given error bound, the algorithm computes a treatment plan with the minimum treatment time. We formulate the SLS problem with error control as computing a k-weight shortest path in a directed graph and build the graph by computing g-matchings and minimum cost flows. Further, we extend our 3-D SLS algorithm to the popular radiotherapy machine models with different constraints. In our extensions, we model the SLS problems for some of the radiotherapy systems as computing a minimum g-path cover of a directed acyclic graph. We implemented our new 3-D SLS algorithm suite and conducted an extensive comparison study with commercial planning systems and well-known algorithms in medical literature. Some of our experimental results based on real medical data are presented.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30551-4_25</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithms and Computation, 2004-01, p.271-281
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16368730
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Error Control
Exact sciences and technology
Groove Side
Leakage Error
Multileaf Collimator
Real Medical Data
Theoretical computing
title Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Geometric%20Approaches%20for%20Leaf%20Sequencing%20Problems%20in%20Radiation%20Therapy&rft.jtitle=Algorithms%20and%20Computation&rft.au=Chen,%20Danny%20Z.&rft.date=2004-01-01&rft.spage=271&rft.epage=281&rft.pages=271-281&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540241317&rft.isbn_list=3540241310&rft_id=info:doi/10.1007/978-3-540-30551-4_25&rft_dat=%3Cpascalfrancis_sprin%3E16368730%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540305513&rft.eisbn_list=9783540305514&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true