Inhambu: Data Mining Using Idle Cycles in Clusters of PCs

In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and worksta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Senger, Hermes, Hruschka, Eduardo R., Silva, Fabrício A. B., Sato, Liria M., Bianchini, Calebe P., Esperidião, Marcelo D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue
container_start_page 213
container_title
container_volume
creator Senger, Hermes
Hruschka, Eduardo R.
Silva, Fabrício A. B.
Sato, Liria M.
Bianchini, Calebe P.
Esperidião, Marcelo D.
description In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.
doi_str_mv 10.1007/978-3-540-30141-7_31
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16367653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16367653</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-baa7603efb151678df35bcd58f3db8737466e62f62ee86e4d6ebac38fffa90e33</originalsourceid><addsrcrecordid>eNotkD1PwzAQhs2XRCn9BwxeGA0-n2M7bCh8RSqCgc6WndglkKZV3A799yQtN9xJ7_vohoeQG-B3wLm-z7VhyDLJGXKQwLRFOCFXOCSHgJ-SCSgAhijzs2MhEI2BczIZEMFyLfGSzFL64cMInqORE5KX3bdb-d0DfXJbR9-brumWdJHGXdZtoMW-akOiTUeLdpe2oU90Helnka7JRXRtCrP_OyWLl-ev4o3NP17L4nHONkKYLfPOacUxRA8ZKG3qiJmv6sxErL3RqKVSQYmoRAhGBVmr4F2FJsboch4Qp-T2-HfjUuXa2LuuapLd9M3K9XsLCpVW2ciJI5eGqluG3vr1-jdZ4HY0aAeDFu2gxR6E2dEg_gFS412a</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</title><source>Springer Books</source><creator>Senger, Hermes ; Hruschka, Eduardo R. ; Silva, Fabrício A. B. ; Sato, Liria M. ; Bianchini, Calebe P. ; Esperidião, Marcelo D.</creator><contributor>Gao, Guang R. ; Jin, Hai ; Chen, Hao ; Xu, Zhiwei</contributor><creatorcontrib>Senger, Hermes ; Hruschka, Eduardo R. ; Silva, Fabrício A. B. ; Sato, Liria M. ; Bianchini, Calebe P. ; Esperidião, Marcelo D. ; Gao, Guang R. ; Jin, Hai ; Chen, Hao ; Xu, Zhiwei</creatorcontrib><description>In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540233881</identifier><identifier>ISBN: 9783540233886</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540301410</identifier><identifier>EISBN: 9783540301417</identifier><identifier>DOI: 10.1007/978-3-540-30141-7_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Cross Validation ; Data Mining ; Data Mining Application ; Estimate Error Rate ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software ; Tenfold Cross Validation</subject><ispartof>Lecture notes in computer science, 2004, p.213-220</ispartof><rights>IFIP International Federation for Information Processing 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30141-7_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30141-7_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16367653$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gao, Guang R.</contributor><contributor>Jin, Hai</contributor><contributor>Chen, Hao</contributor><contributor>Xu, Zhiwei</contributor><creatorcontrib>Senger, Hermes</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Silva, Fabrício A. B.</creatorcontrib><creatorcontrib>Sato, Liria M.</creatorcontrib><creatorcontrib>Bianchini, Calebe P.</creatorcontrib><creatorcontrib>Esperidião, Marcelo D.</creatorcontrib><title>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</title><title>Lecture notes in computer science</title><description>In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Cross Validation</subject><subject>Data Mining</subject><subject>Data Mining Application</subject><subject>Estimate Error Rate</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Tenfold Cross Validation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540233881</isbn><isbn>9783540233886</isbn><isbn>3540301410</isbn><isbn>9783540301417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1PwzAQhs2XRCn9BwxeGA0-n2M7bCh8RSqCgc6WndglkKZV3A799yQtN9xJ7_vohoeQG-B3wLm-z7VhyDLJGXKQwLRFOCFXOCSHgJ-SCSgAhijzs2MhEI2BczIZEMFyLfGSzFL64cMInqORE5KX3bdb-d0DfXJbR9-brumWdJHGXdZtoMW-akOiTUeLdpe2oU90Helnka7JRXRtCrP_OyWLl-ev4o3NP17L4nHONkKYLfPOacUxRA8ZKG3qiJmv6sxErL3RqKVSQYmoRAhGBVmr4F2FJsboch4Qp-T2-HfjUuXa2LuuapLd9M3K9XsLCpVW2ciJI5eGqluG3vr1-jdZ4HY0aAeDFu2gxR6E2dEg_gFS412a</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Senger, Hermes</creator><creator>Hruschka, Eduardo R.</creator><creator>Silva, Fabrício A. B.</creator><creator>Sato, Liria M.</creator><creator>Bianchini, Calebe P.</creator><creator>Esperidião, Marcelo D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</title><author>Senger, Hermes ; Hruschka, Eduardo R. ; Silva, Fabrício A. B. ; Sato, Liria M. ; Bianchini, Calebe P. ; Esperidião, Marcelo D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-baa7603efb151678df35bcd58f3db8737466e62f62ee86e4d6ebac38fffa90e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Cross Validation</topic><topic>Data Mining</topic><topic>Data Mining Application</topic><topic>Estimate Error Rate</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Tenfold Cross Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senger, Hermes</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Silva, Fabrício A. B.</creatorcontrib><creatorcontrib>Sato, Liria M.</creatorcontrib><creatorcontrib>Bianchini, Calebe P.</creatorcontrib><creatorcontrib>Esperidião, Marcelo D.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senger, Hermes</au><au>Hruschka, Eduardo R.</au><au>Silva, Fabrício A. B.</au><au>Sato, Liria M.</au><au>Bianchini, Calebe P.</au><au>Esperidião, Marcelo D.</au><au>Gao, Guang R.</au><au>Jin, Hai</au><au>Chen, Hao</au><au>Xu, Zhiwei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</atitle><btitle>Lecture notes in computer science</btitle><date>2004</date><risdate>2004</risdate><spage>213</spage><epage>220</epage><pages>213-220</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540233881</isbn><isbn>9783540233886</isbn><eisbn>3540301410</eisbn><eisbn>9783540301417</eisbn><abstract>In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30141-7_31</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.213-220
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16367653
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Cross Validation
Data Mining
Data Mining Application
Estimate Error Rate
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Software
Tenfold Cross Validation
title Inhambu: Data Mining Using Idle Cycles in Clusters of PCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inhambu:%20Data%20Mining%20Using%20Idle%20Cycles%20in%20Clusters%20of%20PCs&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Senger,%20Hermes&rft.date=2004&rft.spage=213&rft.epage=220&rft.pages=213-220&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540233881&rft.isbn_list=9783540233886&rft_id=info:doi/10.1007/978-3-540-30141-7_31&rft_dat=%3Cpascalfrancis_sprin%3E16367653%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540301410&rft.eisbn_list=9783540301417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true