Inhambu: Data Mining Using Idle Cycles in Clusters of PCs
In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and worksta...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | |
container_start_page | 213 |
container_title | |
container_volume | |
creator | Senger, Hermes Hruschka, Eduardo R. Silva, Fabrício A. B. Sato, Liria M. Bianchini, Calebe P. Esperidião, Marcelo D. |
description | In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets. |
doi_str_mv | 10.1007/978-3-540-30141-7_31 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16367653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16367653</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-baa7603efb151678df35bcd58f3db8737466e62f62ee86e4d6ebac38fffa90e33</originalsourceid><addsrcrecordid>eNotkD1PwzAQhs2XRCn9BwxeGA0-n2M7bCh8RSqCgc6WndglkKZV3A799yQtN9xJ7_vohoeQG-B3wLm-z7VhyDLJGXKQwLRFOCFXOCSHgJ-SCSgAhijzs2MhEI2BczIZEMFyLfGSzFL64cMInqORE5KX3bdb-d0DfXJbR9-brumWdJHGXdZtoMW-akOiTUeLdpe2oU90Helnka7JRXRtCrP_OyWLl-ev4o3NP17L4nHONkKYLfPOacUxRA8ZKG3qiJmv6sxErL3RqKVSQYmoRAhGBVmr4F2FJsboch4Qp-T2-HfjUuXa2LuuapLd9M3K9XsLCpVW2ciJI5eGqluG3vr1-jdZ4HY0aAeDFu2gxR6E2dEg_gFS412a</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</title><source>Springer Books</source><creator>Senger, Hermes ; Hruschka, Eduardo R. ; Silva, Fabrício A. B. ; Sato, Liria M. ; Bianchini, Calebe P. ; Esperidião, Marcelo D.</creator><contributor>Gao, Guang R. ; Jin, Hai ; Chen, Hao ; Xu, Zhiwei</contributor><creatorcontrib>Senger, Hermes ; Hruschka, Eduardo R. ; Silva, Fabrício A. B. ; Sato, Liria M. ; Bianchini, Calebe P. ; Esperidião, Marcelo D. ; Gao, Guang R. ; Jin, Hai ; Chen, Hao ; Xu, Zhiwei</creatorcontrib><description>In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540233881</identifier><identifier>ISBN: 9783540233886</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540301410</identifier><identifier>EISBN: 9783540301417</identifier><identifier>DOI: 10.1007/978-3-540-30141-7_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Cross Validation ; Data Mining ; Data Mining Application ; Estimate Error Rate ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software ; Tenfold Cross Validation</subject><ispartof>Lecture notes in computer science, 2004, p.213-220</ispartof><rights>IFIP International Federation for Information Processing 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30141-7_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30141-7_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16367653$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gao, Guang R.</contributor><contributor>Jin, Hai</contributor><contributor>Chen, Hao</contributor><contributor>Xu, Zhiwei</contributor><creatorcontrib>Senger, Hermes</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Silva, Fabrício A. B.</creatorcontrib><creatorcontrib>Sato, Liria M.</creatorcontrib><creatorcontrib>Bianchini, Calebe P.</creatorcontrib><creatorcontrib>Esperidião, Marcelo D.</creatorcontrib><title>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</title><title>Lecture notes in computer science</title><description>In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Cross Validation</subject><subject>Data Mining</subject><subject>Data Mining Application</subject><subject>Estimate Error Rate</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Tenfold Cross Validation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540233881</isbn><isbn>9783540233886</isbn><isbn>3540301410</isbn><isbn>9783540301417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1PwzAQhs2XRCn9BwxeGA0-n2M7bCh8RSqCgc6WndglkKZV3A799yQtN9xJ7_vohoeQG-B3wLm-z7VhyDLJGXKQwLRFOCFXOCSHgJ-SCSgAhijzs2MhEI2BczIZEMFyLfGSzFL64cMInqORE5KX3bdb-d0DfXJbR9-brumWdJHGXdZtoMW-akOiTUeLdpe2oU90Helnka7JRXRtCrP_OyWLl-ev4o3NP17L4nHONkKYLfPOacUxRA8ZKG3qiJmv6sxErL3RqKVSQYmoRAhGBVmr4F2FJsboch4Qp-T2-HfjUuXa2LuuapLd9M3K9XsLCpVW2ciJI5eGqluG3vr1-jdZ4HY0aAeDFu2gxR6E2dEg_gFS412a</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Senger, Hermes</creator><creator>Hruschka, Eduardo R.</creator><creator>Silva, Fabrício A. B.</creator><creator>Sato, Liria M.</creator><creator>Bianchini, Calebe P.</creator><creator>Esperidião, Marcelo D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</title><author>Senger, Hermes ; Hruschka, Eduardo R. ; Silva, Fabrício A. B. ; Sato, Liria M. ; Bianchini, Calebe P. ; Esperidião, Marcelo D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-baa7603efb151678df35bcd58f3db8737466e62f62ee86e4d6ebac38fffa90e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Cross Validation</topic><topic>Data Mining</topic><topic>Data Mining Application</topic><topic>Estimate Error Rate</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Tenfold Cross Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senger, Hermes</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Silva, Fabrício A. B.</creatorcontrib><creatorcontrib>Sato, Liria M.</creatorcontrib><creatorcontrib>Bianchini, Calebe P.</creatorcontrib><creatorcontrib>Esperidião, Marcelo D.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senger, Hermes</au><au>Hruschka, Eduardo R.</au><au>Silva, Fabrício A. B.</au><au>Sato, Liria M.</au><au>Bianchini, Calebe P.</au><au>Esperidião, Marcelo D.</au><au>Gao, Guang R.</au><au>Jin, Hai</au><au>Chen, Hao</au><au>Xu, Zhiwei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inhambu: Data Mining Using Idle Cycles in Clusters of PCs</atitle><btitle>Lecture notes in computer science</btitle><date>2004</date><risdate>2004</risdate><spage>213</spage><epage>220</epage><pages>213-220</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540233881</isbn><isbn>9783540233886</isbn><eisbn>3540301410</eisbn><eisbn>9783540301417</eisbn><abstract>In this paper we present and evaluate Inhambu, a distributed object-oriented system that relies on dynamic monitoring to collect information about the availability of computational resources, providing the necessary support for the execution of data mining applications on clusters of PCs and workstations. We also describe a modified implementation of the data mining tool Weka, which executes the cross validation procedure in parallel with the support of Inhambu. We present preliminary tests, showing that performance gains can be obtained for computationally expensive data mining algorithms, even when running with small datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30141-7_31</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2004, p.213-220 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16367653 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Cross Validation Data Mining Data Mining Application Estimate Error Rate Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software Tenfold Cross Validation |
title | Inhambu: Data Mining Using Idle Cycles in Clusters of PCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inhambu:%20Data%20Mining%20Using%20Idle%20Cycles%20in%20Clusters%20of%20PCs&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Senger,%20Hermes&rft.date=2004&rft.spage=213&rft.epage=220&rft.pages=213-220&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540233881&rft.isbn_list=9783540233886&rft_id=info:doi/10.1007/978-3-540-30141-7_31&rft_dat=%3Cpascalfrancis_sprin%3E16367653%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540301410&rft.eisbn_list=9783540301417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |