Sensors Network Optimization by a Novel Genetic Algorithm

This paper describes the optimization of a sensor network by a novel Genetic Algorithm (GA) that we call King Mutation C2. For a given distribution of sensors, the goal of the system is to determine the optimal combination of sensors that can detect and/or locate the objects. An optimal combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Hui, Buczak, Anna L., Jin, Hong, Wang, Hongan, Li, Baosen
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue
container_start_page 536
container_title
container_volume
creator Wang, Hui
Buczak, Anna L.
Jin, Hong
Wang, Hongan
Li, Baosen
description This paper describes the optimization of a sensor network by a novel Genetic Algorithm (GA) that we call King Mutation C2. For a given distribution of sensors, the goal of the system is to determine the optimal combination of sensors that can detect and/or locate the objects. An optimal combination is the one that minimizes the power consumption of the entire sensor network and gives the best accuracy of location of desired objects. The system constructs a GA with the appropriate internal structure for the optimization problem at hand, and King Mutation C2 finds the quasi-optimal combination of sensors that can detect and/or locate the objects. The study is performed for the sensor network optimization problem with five objects to detect/track and the results obtained by a canonical GA and King Mutation C2 are compared.
doi_str_mv 10.1007/978-3-540-30141-7_80
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16367625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16367625</sourcerecordid><originalsourceid>FETCH-LOGICAL-p274t-670c1e0abb1e2a7f7edc2ce5405f47f4c12785d8968b6be53abd8530c4b30f53</originalsourceid><addsrcrecordid>eNotkE9PAyEQxfFfYq39Bh64eESBYYE9No1Wk6Y92DsBylbsdncDG0399G5b5zLJey8zLz-EHhh9YpSq51JpAqQQlABlghFlNL1AdzAoJ4FeohGTjBEAUV6dDQ6gNbtGoyHCSakE3KJJzl90GE5L0GKEyo_Q5DZlvAz9T5t2eNX1cR9_bR_bBrsDtnjZfocaz0MT-ujxtN62Kfaf-3t0U9k6h8n_HqP168t69kYWq_n7bLogHVeiJ1JRzwK1zrHArapU2Hjuw1CvqISqhGdc6WKjS6mddKEA6za6AOqFA1oVMEaP57Odzd7WVbKNj9l0Ke5tOhgmQSrJjzl-zuXBarYhGde2u2wYNUeAZgBowAxvzYmXOQKEPxNvXjk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Sensors Network Optimization by a Novel Genetic Algorithm</title><source>Springer Books</source><creator>Wang, Hui ; Buczak, Anna L. ; Jin, Hong ; Wang, Hongan ; Li, Baosen</creator><contributor>Gao, Guang R. ; Jin, Hai ; Chen, Hao ; Xu, Zhiwei</contributor><creatorcontrib>Wang, Hui ; Buczak, Anna L. ; Jin, Hong ; Wang, Hongan ; Li, Baosen ; Gao, Guang R. ; Jin, Hai ; Chen, Hao ; Xu, Zhiwei</creatorcontrib><description>This paper describes the optimization of a sensor network by a novel Genetic Algorithm (GA) that we call King Mutation C2. For a given distribution of sensors, the goal of the system is to determine the optimal combination of sensors that can detect and/or locate the objects. An optimal combination is the one that minimizes the power consumption of the entire sensor network and gives the best accuracy of location of desired objects. The system constructs a GA with the appropriate internal structure for the optimization problem at hand, and King Mutation C2 finds the quasi-optimal combination of sensors that can detect and/or locate the objects. The study is performed for the sensor network optimization problem with five objects to detect/track and the results obtained by a canonical GA and King Mutation C2 are compared.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540233881</identifier><identifier>ISBN: 9783540233886</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540301410</identifier><identifier>EISBN: 9783540301417</identifier><identifier>DOI: 10.1007/978-3-540-30141-7_80</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Genetic Algorithm ; Network Objective ; Object Tracking ; Reproduction Process ; Sensor Network ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Theoretical computing ; Valuation and optimization of characteristics. Simulation</subject><ispartof>Lecture notes in computer science, 2004, p.536-543</ispartof><rights>IFIP International Federation for Information Processing 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30141-7_80$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30141-7_80$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16367625$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gao, Guang R.</contributor><contributor>Jin, Hai</contributor><contributor>Chen, Hao</contributor><contributor>Xu, Zhiwei</contributor><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Buczak, Anna L.</creatorcontrib><creatorcontrib>Jin, Hong</creatorcontrib><creatorcontrib>Wang, Hongan</creatorcontrib><creatorcontrib>Li, Baosen</creatorcontrib><title>Sensors Network Optimization by a Novel Genetic Algorithm</title><title>Lecture notes in computer science</title><description>This paper describes the optimization of a sensor network by a novel Genetic Algorithm (GA) that we call King Mutation C2. For a given distribution of sensors, the goal of the system is to determine the optimal combination of sensors that can detect and/or locate the objects. An optimal combination is the one that minimizes the power consumption of the entire sensor network and gives the best accuracy of location of desired objects. The system constructs a GA with the appropriate internal structure for the optimization problem at hand, and King Mutation C2 finds the quasi-optimal combination of sensors that can detect and/or locate the objects. The study is performed for the sensor network optimization problem with five objects to detect/track and the results obtained by a canonical GA and King Mutation C2 are compared.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Network Objective</subject><subject>Object Tracking</subject><subject>Reproduction Process</subject><subject>Sensor Network</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Theoretical computing</subject><subject>Valuation and optimization of characteristics. Simulation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540233881</isbn><isbn>9783540233886</isbn><isbn>3540301410</isbn><isbn>9783540301417</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE9PAyEQxfFfYq39Bh64eESBYYE9No1Wk6Y92DsBylbsdncDG0399G5b5zLJey8zLz-EHhh9YpSq51JpAqQQlABlghFlNL1AdzAoJ4FeohGTjBEAUV6dDQ6gNbtGoyHCSakE3KJJzl90GE5L0GKEyo_Q5DZlvAz9T5t2eNX1cR9_bR_bBrsDtnjZfocaz0MT-ujxtN62Kfaf-3t0U9k6h8n_HqP168t69kYWq_n7bLogHVeiJ1JRzwK1zrHArapU2Hjuw1CvqISqhGdc6WKjS6mddKEA6za6AOqFA1oVMEaP57Odzd7WVbKNj9l0Ke5tOhgmQSrJjzl-zuXBarYhGde2u2wYNUeAZgBowAxvzYmXOQKEPxNvXjk</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Wang, Hui</creator><creator>Buczak, Anna L.</creator><creator>Jin, Hong</creator><creator>Wang, Hongan</creator><creator>Li, Baosen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Sensors Network Optimization by a Novel Genetic Algorithm</title><author>Wang, Hui ; Buczak, Anna L. ; Jin, Hong ; Wang, Hongan ; Li, Baosen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p274t-670c1e0abb1e2a7f7edc2ce5405f47f4c12785d8968b6be53abd8530c4b30f53</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Network Objective</topic><topic>Object Tracking</topic><topic>Reproduction Process</topic><topic>Sensor Network</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Theoretical computing</topic><topic>Valuation and optimization of characteristics. Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Buczak, Anna L.</creatorcontrib><creatorcontrib>Jin, Hong</creatorcontrib><creatorcontrib>Wang, Hongan</creatorcontrib><creatorcontrib>Li, Baosen</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Buczak, Anna L.</au><au>Jin, Hong</au><au>Wang, Hongan</au><au>Li, Baosen</au><au>Gao, Guang R.</au><au>Jin, Hai</au><au>Chen, Hao</au><au>Xu, Zhiwei</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Sensors Network Optimization by a Novel Genetic Algorithm</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><spage>536</spage><epage>543</epage><pages>536-543</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540233881</isbn><isbn>9783540233886</isbn><eisbn>3540301410</eisbn><eisbn>9783540301417</eisbn><abstract>This paper describes the optimization of a sensor network by a novel Genetic Algorithm (GA) that we call King Mutation C2. For a given distribution of sensors, the goal of the system is to determine the optimal combination of sensors that can detect and/or locate the objects. An optimal combination is the one that minimizes the power consumption of the entire sensor network and gives the best accuracy of location of desired objects. The system constructs a GA with the appropriate internal structure for the optimization problem at hand, and King Mutation C2 finds the quasi-optimal combination of sensors that can detect and/or locate the objects. The study is performed for the sensor network optimization problem with five objects to detect/track and the results obtained by a canonical GA and King Mutation C2 are compared.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30141-7_80</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.536-543
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16367625
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Genetic Algorithm
Network Objective
Object Tracking
Reproduction Process
Sensor Network
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Theoretical computing
Valuation and optimization of characteristics. Simulation
title Sensors Network Optimization by a Novel Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Sensors%20Network%20Optimization%20by%20a%20Novel%20Genetic%20Algorithm&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Wang,%20Hui&rft.date=2004&rft.spage=536&rft.epage=543&rft.pages=536-543&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540233881&rft.isbn_list=9783540233886&rft_id=info:doi/10.1007/978-3-540-30141-7_80&rft_dat=%3Cpascalfrancis_sprin%3E16367625%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540301410&rft.eisbn_list=9783540301417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true