Magnetization dynamics of soft nanocrystalline thin films with random magnetocrystalline anisotropy and induced uniaxial anisotropy

Results of frequency-dependent ferromagnetic resonance (FMR) measurements are presented for thin Fe-Zr-N nanocrystalline films with random magnetocrystalline anisotropy and induced uniaxial anisotropy. The study is done by changing the composition, the grain size and the magnitude of the induced ani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2004-12, Vol.16 (50), p.9227-9241
Hauptverfasser: Craus, C B, Chezan, A R, Boerma, D O, Niesen, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9241
container_issue 50
container_start_page 9227
container_title Journal of physics. Condensed matter
container_volume 16
creator Craus, C B
Chezan, A R
Boerma, D O
Niesen, L
description Results of frequency-dependent ferromagnetic resonance (FMR) measurements are presented for thin Fe-Zr-N nanocrystalline films with random magnetocrystalline anisotropy and induced uniaxial anisotropy. The study is done by changing the composition, the grain size and the magnitude of the induced anisotropy. We show that the magnetization dynamics is strongly influenced by the structural parameters of our samples. Although the frequency-dependent spectra can be analysed on the basis of the Landau-Lifshitz equation, an extra field Hshift has to be introduced in order to have agreement between the experiment and calculations. This extra field does not depend on the saturation magnetization and increases significantly when the grain size decreases from 10 to 2 nm. In addition, we observe a nonlinear decrease of the frequency linewidth with the applied dc field. After discussing various existing models we conclude that Hshift originates from variations in the magnitudeof the magnetization, related with the nanocrystalline structure.
doi_str_mv 10.1088/0953-8984/16/50/013
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16357795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29836966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b92fee28568f5115376f45acb4b59b96c95a191075a379cc81e1a8991ac117ba3</originalsourceid><addsrcrecordid>eNqNkDFv1DAYhi1UJI6jv6CLFzog5c7fOXbssapaQCpiAYnN-uLY1Cix09in9lj54-S4ClqVoZM_yc_zDg8hJ8BWwJRaMy14pbSq1yDXgq0Z8BdkAVxCJWv17Ygs_hKvyOucfzDGasXrBfn1Cb9HV8JPLCFF2u0iDsFmmjzNyRcaMSY77XLBvg_R0XIdIvWhHzK9DeWaThi7NNDhz8ojEmPIqUxp3M1nR0PsttZ1dBsD3gXsH_y_IS899tkd379L8vXy4sv5h-rq8_uP52dXleWqLlWrN965jRJSeQEgeCN9LdC2dSt0q6XVAkEDawTyRlurwAEqrQEtQNMiX5LTw-44pZuty8UMIVvX9xhd2maz0YpLLeUM8gNop5Tz5LwZpzDgtDPAzD642ec0-5wGpBHMzMFn6-39PGaLvZ_T2JD_qZKLppm9JVkduJDGZw6_eyr8BzRj5_lvtgKfng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29836966</pqid></control><display><type>article</type><title>Magnetization dynamics of soft nanocrystalline thin films with random magnetocrystalline anisotropy and induced uniaxial anisotropy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Craus, C B ; Chezan, A R ; Boerma, D O ; Niesen, L</creator><creatorcontrib>Craus, C B ; Chezan, A R ; Boerma, D O ; Niesen, L</creatorcontrib><description>Results of frequency-dependent ferromagnetic resonance (FMR) measurements are presented for thin Fe-Zr-N nanocrystalline films with random magnetocrystalline anisotropy and induced uniaxial anisotropy. The study is done by changing the composition, the grain size and the magnitude of the induced anisotropy. We show that the magnetization dynamics is strongly influenced by the structural parameters of our samples. Although the frequency-dependent spectra can be analysed on the basis of the Landau-Lifshitz equation, an extra field Hshift has to be introduced in order to have agreement between the experiment and calculations. This extra field does not depend on the saturation magnetization and increases significantly when the grain size decreases from 10 to 2 nm. In addition, we observe a nonlinear decrease of the frequency linewidth with the applied dc field. After discussing various existing models we conclude that Hshift originates from variations in the magnitudeof the magnetization, related with the nanocrystalline structure.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/16/50/013</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance ; Magnetic properties and materials ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Physics ; Studies of specific magnetic materials</subject><ispartof>Journal of physics. Condensed matter, 2004-12, Vol.16 (50), p.9227-9241</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b92fee28568f5115376f45acb4b59b96c95a191075a379cc81e1a8991ac117ba3</citedby><cites>FETCH-LOGICAL-c384t-b92fee28568f5115376f45acb4b59b96c95a191075a379cc81e1a8991ac117ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/16/50/013/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53811,53891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16357795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Craus, C B</creatorcontrib><creatorcontrib>Chezan, A R</creatorcontrib><creatorcontrib>Boerma, D O</creatorcontrib><creatorcontrib>Niesen, L</creatorcontrib><title>Magnetization dynamics of soft nanocrystalline thin films with random magnetocrystalline anisotropy and induced uniaxial anisotropy</title><title>Journal of physics. Condensed matter</title><description>Results of frequency-dependent ferromagnetic resonance (FMR) measurements are presented for thin Fe-Zr-N nanocrystalline films with random magnetocrystalline anisotropy and induced uniaxial anisotropy. The study is done by changing the composition, the grain size and the magnitude of the induced anisotropy. We show that the magnetization dynamics is strongly influenced by the structural parameters of our samples. Although the frequency-dependent spectra can be analysed on the basis of the Landau-Lifshitz equation, an extra field Hshift has to be introduced in order to have agreement between the experiment and calculations. This extra field does not depend on the saturation magnetization and increases significantly when the grain size decreases from 10 to 2 nm. In addition, we observe a nonlinear decrease of the frequency linewidth with the applied dc field. After discussing various existing models we conclude that Hshift originates from variations in the magnitudeof the magnetization, related with the nanocrystalline structure.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance</subject><subject>Magnetic properties and materials</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Physics</subject><subject>Studies of specific magnetic materials</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkDFv1DAYhi1UJI6jv6CLFzog5c7fOXbssapaQCpiAYnN-uLY1Cix09in9lj54-S4ClqVoZM_yc_zDg8hJ8BWwJRaMy14pbSq1yDXgq0Z8BdkAVxCJWv17Ygs_hKvyOucfzDGasXrBfn1Cb9HV8JPLCFF2u0iDsFmmjzNyRcaMSY77XLBvg_R0XIdIvWhHzK9DeWaThi7NNDhz8ojEmPIqUxp3M1nR0PsttZ1dBsD3gXsH_y_IS899tkd379L8vXy4sv5h-rq8_uP52dXleWqLlWrN965jRJSeQEgeCN9LdC2dSt0q6XVAkEDawTyRlurwAEqrQEtQNMiX5LTw-44pZuty8UMIVvX9xhd2maz0YpLLeUM8gNop5Tz5LwZpzDgtDPAzD642ec0-5wGpBHMzMFn6-39PGaLvZ_T2JD_qZKLppm9JVkduJDGZw6_eyr8BzRj5_lvtgKfng</recordid><startdate>20041222</startdate><enddate>20041222</enddate><creator>Craus, C B</creator><creator>Chezan, A R</creator><creator>Boerma, D O</creator><creator>Niesen, L</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041222</creationdate><title>Magnetization dynamics of soft nanocrystalline thin films with random magnetocrystalline anisotropy and induced uniaxial anisotropy</title><author>Craus, C B ; Chezan, A R ; Boerma, D O ; Niesen, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b92fee28568f5115376f45acb4b59b96c95a191075a379cc81e1a8991ac117ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance</topic><topic>Magnetic properties and materials</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Physics</topic><topic>Studies of specific magnetic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craus, C B</creatorcontrib><creatorcontrib>Chezan, A R</creatorcontrib><creatorcontrib>Boerma, D O</creatorcontrib><creatorcontrib>Niesen, L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craus, C B</au><au>Chezan, A R</au><au>Boerma, D O</au><au>Niesen, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetization dynamics of soft nanocrystalline thin films with random magnetocrystalline anisotropy and induced uniaxial anisotropy</atitle><jtitle>Journal of physics. Condensed matter</jtitle><date>2004-12-22</date><risdate>2004</risdate><volume>16</volume><issue>50</issue><spage>9227</spage><epage>9241</epage><pages>9227-9241</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Results of frequency-dependent ferromagnetic resonance (FMR) measurements are presented for thin Fe-Zr-N nanocrystalline films with random magnetocrystalline anisotropy and induced uniaxial anisotropy. The study is done by changing the composition, the grain size and the magnitude of the induced anisotropy. We show that the magnetization dynamics is strongly influenced by the structural parameters of our samples. Although the frequency-dependent spectra can be analysed on the basis of the Landau-Lifshitz equation, an extra field Hshift has to be introduced in order to have agreement between the experiment and calculations. This extra field does not depend on the saturation magnetization and increases significantly when the grain size decreases from 10 to 2 nm. In addition, we observe a nonlinear decrease of the frequency linewidth with the applied dc field. After discussing various existing models we conclude that Hshift originates from variations in the magnitudeof the magnetization, related with the nanocrystalline structure.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-8984/16/50/013</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2004-12, Vol.16 (50), p.9227-9241
issn 0953-8984
1361-648X
language eng
recordid cdi_pascalfrancis_primary_16357795
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances
spin-wave resonance
Magnetic properties and materials
Magnetic resonances and relaxations in condensed matter, mössbauer effect
Physics
Studies of specific magnetic materials
title Magnetization dynamics of soft nanocrystalline thin films with random magnetocrystalline anisotropy and induced uniaxial anisotropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetization%20dynamics%20of%20soft%20nanocrystalline%20thin%20films%20with%20random%20magnetocrystalline%20anisotropy%20and%20induced%20uniaxial%20anisotropy&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Craus,%20C%20B&rft.date=2004-12-22&rft.volume=16&rft.issue=50&rft.spage=9227&rft.epage=9241&rft.pages=9227-9241&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/16/50/013&rft_dat=%3Cproquest_pasca%3E29836966%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29836966&rft_id=info:pmid/&rfr_iscdi=true