A Functional Language for Logarithmic Space
More than being just a tool for expressing algorithms, a well-designed programming language allows the user to express her ideas efficiently. The design choices however effect the efficiency of the algorithms written in the languages. It is therefore important to understand how such choices effect t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | |
container_start_page | 311 |
container_title | |
container_volume | 3302 |
creator | Neergaard, Peter Møller |
description | More than being just a tool for expressing algorithms, a well-designed programming language allows the user to express her ideas efficiently. The design choices however effect the efficiency of the algorithms written in the languages. It is therefore important to understand how such choices effect the expressibility of programming languages.
The paper pursues the very low complexity programs by presenting a first-order function algebra BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} that captures exactly lf, the functions computable in logarithmic space. This gives insights into the expressiveness of recursion.
The important technical features of BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} are (1) a separation of variables into safe and normal variables where recursion can only be done over the latter; (2) linearity of the recursive call; and (3) recursion with a variable step length (course-of-value recursion). Unlike formulations of LF via Turing machines, BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} makes no references to outside resource measures, e.g., the size of the memory used. This appears to be the first such characterization of LF-computable functions (not just predicates).
The proof that all BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document}-programs can be evaluated in lf is of separate interest to programmers: it trades space for time and evaluates recursion with at most one recursive call without a call stack. |
doi_str_mv | 10.1007/978-3-540-30477-7_21 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16335515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087772_28_321</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-cc13ccc5c156b1f631ef9ac257f742bfa2ee5048759d70bf4bac31beb5fd7dd93</originalsourceid><addsrcrecordid>eNotkLtOwzAUhs1VhNI3YMjChAy2jx3XI6ooIEViAGbLcew0kCbBTgfeHvdyliP9t-FD6JaSB0qIfFRygQELTjAQLiWWmtETNE8yJHGvyVOU0YJSDMDVGbreGQwk4-QcZSnCsJIcLlGmki9VKl6heYzfJB0woRhk6P4pX217O7VDb7q8NH2zNY3L_RDycmhMaKf1prX5x2isu0EX3nTRzY9_hr5Wz5_LV1y-v7wtn0o8MskmbC0Fa62wVBQV9QVQ55WxTEgvOau8Yc4JwhdSqFqSyvPKWKCVq4SvZV0rmKG7w-5oojWdD6a3bdRjaDcm_GlaAAhBRcqxQy4mq29c0NUw_ERNid4h1ImVBp2g6D0uvUOYSnAcD8Pv1sVJu13Lun4KprNrM04uxNRYJMBMszSRWv91Lm4q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087772_28_321</pqid></control><display><type>book_chapter</type><title>A Functional Language for Logarithmic Space</title><source>Springer Books</source><creator>Neergaard, Peter Møller</creator><contributor>Chin, Wei-Ngan ; Chin, Wei-Ngan</contributor><creatorcontrib>Neergaard, Peter Møller ; Chin, Wei-Ngan ; Chin, Wei-Ngan</creatorcontrib><description>More than being just a tool for expressing algorithms, a well-designed programming language allows the user to express her ideas efficiently. The design choices however effect the efficiency of the algorithms written in the languages. It is therefore important to understand how such choices effect the expressibility of programming languages.
The paper pursues the very low complexity programs by presenting a first-order function algebra BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} that captures exactly lf, the functions computable in logarithmic space. This gives insights into the expressiveness of recursion.
The important technical features of BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} are (1) a separation of variables into safe and normal variables where recursion can only be done over the latter; (2) linearity of the recursive call; and (3) recursion with a variable step length (course-of-value recursion). Unlike formulations of LF via Turing machines, BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} makes no references to outside resource measures, e.g., the size of the memory used. This appears to be the first such characterization of LF-computable functions (not just predicates).
The proof that all BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document}-programs can be evaluated in lf is of separate interest to programmers: it trades space for time and evaluates recursion with at most one recursive call without a call stack.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540237240</identifier><identifier>ISBN: 9783540237242</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540304777</identifier><identifier>EISBN: 3540304770</identifier><identifier>DOI: 10.1007/978-3-540-30477-7_21</identifier><identifier>OCLC: 934979835</identifier><identifier>LCCallNum: QA76.76.C65</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Complexity Class ; Computer science; control theory; systems ; Exact sciences and technology ; Logarithmic Space ; Normal Argument ; Programming languages ; Recursive Call ; Software ; Turing Machine</subject><ispartof>Lecture notes in computer science, 2004, Vol.3302, p.311-326</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087772-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30477-7_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30477-7_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27908,38238,41425,42494</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16335515$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Chin, Wei-Ngan</contributor><contributor>Chin, Wei-Ngan</contributor><creatorcontrib>Neergaard, Peter Møller</creatorcontrib><title>A Functional Language for Logarithmic Space</title><title>Lecture notes in computer science</title><description>More than being just a tool for expressing algorithms, a well-designed programming language allows the user to express her ideas efficiently. The design choices however effect the efficiency of the algorithms written in the languages. It is therefore important to understand how such choices effect the expressibility of programming languages.
The paper pursues the very low complexity programs by presenting a first-order function algebra BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} that captures exactly lf, the functions computable in logarithmic space. This gives insights into the expressiveness of recursion.
The important technical features of BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} are (1) a separation of variables into safe and normal variables where recursion can only be done over the latter; (2) linearity of the recursive call; and (3) recursion with a variable step length (course-of-value recursion). Unlike formulations of LF via Turing machines, BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} makes no references to outside resource measures, e.g., the size of the memory used. This appears to be the first such characterization of LF-computable functions (not just predicates).
The proof that all BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document}-programs can be evaluated in lf is of separate interest to programmers: it trades space for time and evaluates recursion with at most one recursive call without a call stack.</description><subject>Applied sciences</subject><subject>Complexity Class</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logarithmic Space</subject><subject>Normal Argument</subject><subject>Programming languages</subject><subject>Recursive Call</subject><subject>Software</subject><subject>Turing Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540237240</isbn><isbn>9783540237242</isbn><isbn>9783540304777</isbn><isbn>3540304770</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkLtOwzAUhs1VhNI3YMjChAy2jx3XI6ooIEViAGbLcew0kCbBTgfeHvdyliP9t-FD6JaSB0qIfFRygQELTjAQLiWWmtETNE8yJHGvyVOU0YJSDMDVGbreGQwk4-QcZSnCsJIcLlGmki9VKl6heYzfJB0woRhk6P4pX217O7VDb7q8NH2zNY3L_RDycmhMaKf1prX5x2isu0EX3nTRzY9_hr5Wz5_LV1y-v7wtn0o8MskmbC0Fa62wVBQV9QVQ55WxTEgvOau8Yc4JwhdSqFqSyvPKWKCVq4SvZV0rmKG7w-5oojWdD6a3bdRjaDcm_GlaAAhBRcqxQy4mq29c0NUw_ERNid4h1ImVBp2g6D0uvUOYSnAcD8Pv1sVJu13Lun4KprNrM04uxNRYJMBMszSRWv91Lm4q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Neergaard, Peter Møller</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A Functional Language for Logarithmic Space</title><author>Neergaard, Peter Møller</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-cc13ccc5c156b1f631ef9ac257f742bfa2ee5048759d70bf4bac31beb5fd7dd93</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Complexity Class</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logarithmic Space</topic><topic>Normal Argument</topic><topic>Programming languages</topic><topic>Recursive Call</topic><topic>Software</topic><topic>Turing Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neergaard, Peter Møller</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neergaard, Peter Møller</au><au>Chin, Wei-Ngan</au><au>Chin, Wei-Ngan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Functional Language for Logarithmic Space</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3302</volume><spage>311</spage><epage>326</epage><pages>311-326</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540237240</isbn><isbn>9783540237242</isbn><eisbn>9783540304777</eisbn><eisbn>3540304770</eisbn><abstract>More than being just a tool for expressing algorithms, a well-designed programming language allows the user to express her ideas efficiently. The design choices however effect the efficiency of the algorithms written in the languages. It is therefore important to understand how such choices effect the expressibility of programming languages.
The paper pursues the very low complexity programs by presenting a first-order function algebra BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} that captures exactly lf, the functions computable in logarithmic space. This gives insights into the expressiveness of recursion.
The important technical features of BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} are (1) a separation of variables into safe and normal variables where recursion can only be done over the latter; (2) linearity of the recursive call; and (3) recursion with a variable step length (course-of-value recursion). Unlike formulations of LF via Turing machines, BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document} makes no references to outside resource measures, e.g., the size of the memory used. This appears to be the first such characterization of LF-computable functions (not just predicates).
The proof that all BC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\rm -}_{\epsilon}$\end{document}-programs can be evaluated in lf is of separate interest to programmers: it trades space for time and evaluates recursion with at most one recursive call without a call stack.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-30477-7_21</doi><oclcid>934979835</oclcid><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2004, Vol.3302, p.311-326 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16335515 |
source | Springer Books |
subjects | Applied sciences Complexity Class Computer science control theory systems Exact sciences and technology Logarithmic Space Normal Argument Programming languages Recursive Call Software Turing Machine |
title | A Functional Language for Logarithmic Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Functional%20Language%20for%20Logarithmic%20Space&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Neergaard,%20Peter%20M%C3%B8ller&rft.date=2004&rft.volume=3302&rft.spage=311&rft.epage=326&rft.pages=311-326&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540237240&rft.isbn_list=9783540237242&rft_id=info:doi/10.1007/978-3-540-30477-7_21&rft_dat=%3Cproquest_pasca%3EEBC3087772_28_321%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540304777&rft.eisbn_list=3540304770&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087772_28_321&rft_id=info:pmid/&rfr_iscdi=true |