The Caveolin genes: from cell biology to medicine

Caveolae are vesicular organelles (50-100-nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of medicine (Helsinki) 2004, Vol.36 (8), p.584-595
Hauptverfasser: Williams, Terence M, Lisanti, Michael P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 8
container_start_page 584
container_title Annals of medicine (Helsinki)
container_volume 36
creator Williams, Terence M
Lisanti, Michael P
description Caveolae are vesicular organelles (50-100-nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and signal transduction, as well as in cholesterol homeostasis. Caveolins are the structural proteins that are both necessary and sufficient for the formation of caveolae membrane domains. Caveolins 1 and 2 are co-expressed in most cell types, while the expression of caveolin-3 is muscle-specific. Thus, endothelial cells and fibroblasts are rich in caveolins 1 and 2, while cardiac myocytes and skeletal muscle fibers express caveolin-3. In contrast, smooth muscle cells express all three caveolins (Cav-1, -2, and -3). Mechanistically, caveolins interact with a variety of downstream signaling molecules, including Src-family tyrosine kinases, p42 44 mitogen activated protein (MAP) kinase, and endothelial nitric oxide synthase (eNOS), and hold these signal transducers in the inactive conformation until activation by an appropriate stimulus. In many ways, caveolins serve both to compartmentalize and regulate signaling. Recent studies using caveolin-deficient mouse models dramatically show that caveolae and caveolins play a prominent role in various human patho-biological conditions, especially those related to the cardiovascular system. These disease phenotypes include: atherosclerosis, cardiac hypertrophy, cardiomyopathy, pulmonary hypertension, and neointimal hyperplasia (smooth muscle cell proliferation). In addition, caveolins play a significant role in other disease phenotypes, such as cancer, diabetes, bladder dysfunction, and muscular dystrophy, as we discuss in this review. Thus, caveolin-deficient mice will serve as important new animal models to dissect the intricate role of caveolae and caveolins in the pathogenesis of human diseases.
doi_str_mv 10.1080/07853890410018899
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16332867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67266298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-be4b6ae082debf896c4df5804befb2279d9eea6227ae494d2bf06d6b5875e7ec3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMo7rr6AbxIL3qrTtI2SdWLLP6DBS96Lkk6cbukjSZdZb-9XXZFRPA0A_N7j3mPkGMK5xQkXICQRSZLyCkAlbIsd8iYZrxIGXDYJeP1PV0DI3IQ4wIAmKCwT0a0EFzKDMaEPs8xmaoP9K7pklfsMF4mNvg2Mehcohvv_Osq6X3SYt2YpsNDsmeVi3i0nRPycnf7PH1IZ0_3j9ObWWpyIfpUY665QpCsRm1lyU1e20JCrtFqxkRZl4iKD5vCvMxrpi3wmutCigIFmmxCzja-b8G_LzH2VdvE9VOqQ7-MFReMc1bKAaQb0AQfY0BbvYWmVWFVUajWPVV_eho0J1vzpR6C_Si2xQzA6RZQ0Shng-pME384nmVMcjFw1xuu6awPrfr0wdVVr1bOh29R9t8fV7_kc1SunxsVsFr4ZeiGgv9J8QVsGpR6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67266298</pqid></control><display><type>article</type><title>The Caveolin genes: from cell biology to medicine</title><source>MEDLINE</source><source>Taylor &amp; Francis Online</source><source>EZB Electronic Journals Library</source><creator>Williams, Terence M ; Lisanti, Michael P</creator><creatorcontrib>Williams, Terence M ; Lisanti, Michael P</creatorcontrib><description>Caveolae are vesicular organelles (50-100-nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and signal transduction, as well as in cholesterol homeostasis. Caveolins are the structural proteins that are both necessary and sufficient for the formation of caveolae membrane domains. Caveolins 1 and 2 are co-expressed in most cell types, while the expression of caveolin-3 is muscle-specific. Thus, endothelial cells and fibroblasts are rich in caveolins 1 and 2, while cardiac myocytes and skeletal muscle fibers express caveolin-3. In contrast, smooth muscle cells express all three caveolins (Cav-1, -2, and -3). Mechanistically, caveolins interact with a variety of downstream signaling molecules, including Src-family tyrosine kinases, p42 44 mitogen activated protein (MAP) kinase, and endothelial nitric oxide synthase (eNOS), and hold these signal transducers in the inactive conformation until activation by an appropriate stimulus. In many ways, caveolins serve both to compartmentalize and regulate signaling. Recent studies using caveolin-deficient mouse models dramatically show that caveolae and caveolins play a prominent role in various human patho-biological conditions, especially those related to the cardiovascular system. These disease phenotypes include: atherosclerosis, cardiac hypertrophy, cardiomyopathy, pulmonary hypertension, and neointimal hyperplasia (smooth muscle cell proliferation). In addition, caveolins play a significant role in other disease phenotypes, such as cancer, diabetes, bladder dysfunction, and muscular dystrophy, as we discuss in this review. Thus, caveolin-deficient mice will serve as important new animal models to dissect the intricate role of caveolae and caveolins in the pathogenesis of human diseases.</description><identifier>ISSN: 0785-3890</identifier><identifier>EISSN: 1365-2060</identifier><identifier>DOI: 10.1080/07853890410018899</identifier><identifier>PMID: 15768830</identifier><language>eng</language><publisher>Basingstoke: Informa UK Ltd</publisher><subject>Animals ; Arteriosclerosis - genetics ; atherosclerosis ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; cancer ; Cardiology. Vascular system ; Cardiomyopathies - genetics ; cardiomyopathy ; Caveolae - physiology ; Caveolin 1 ; Caveolins - genetics ; Disease Models, Animal ; Endocytosis - genetics ; Endocytosis - physiology ; Female Urogenital Diseases - genetics ; General aspects ; genetic disease ; Humans ; Lung Diseases - genetics ; Male Urogenital Diseases ; Medical sciences ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinases - physiology ; mouse animal models ; Muscle, Smooth - cytology ; Muscular Dystrophies - genetics ; muscular dystrophy ; Neoplasms - genetics ; Signal Transduction - genetics ; src-Family Kinases - physiology ; vascular disease</subject><ispartof>Annals of medicine (Helsinki), 2004, Vol.36 (8), p.584-595</ispartof><rights>2004 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-be4b6ae082debf896c4df5804befb2279d9eea6227ae494d2bf06d6b5875e7ec3</citedby><cites>FETCH-LOGICAL-c477t-be4b6ae082debf896c4df5804befb2279d9eea6227ae494d2bf06d6b5875e7ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/07853890410018899$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/07853890410018899$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436,61221,61402</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16332867$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15768830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Terence M</creatorcontrib><creatorcontrib>Lisanti, Michael P</creatorcontrib><title>The Caveolin genes: from cell biology to medicine</title><title>Annals of medicine (Helsinki)</title><addtitle>Ann Med</addtitle><description>Caveolae are vesicular organelles (50-100-nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and signal transduction, as well as in cholesterol homeostasis. Caveolins are the structural proteins that are both necessary and sufficient for the formation of caveolae membrane domains. Caveolins 1 and 2 are co-expressed in most cell types, while the expression of caveolin-3 is muscle-specific. Thus, endothelial cells and fibroblasts are rich in caveolins 1 and 2, while cardiac myocytes and skeletal muscle fibers express caveolin-3. In contrast, smooth muscle cells express all three caveolins (Cav-1, -2, and -3). Mechanistically, caveolins interact with a variety of downstream signaling molecules, including Src-family tyrosine kinases, p42 44 mitogen activated protein (MAP) kinase, and endothelial nitric oxide synthase (eNOS), and hold these signal transducers in the inactive conformation until activation by an appropriate stimulus. In many ways, caveolins serve both to compartmentalize and regulate signaling. Recent studies using caveolin-deficient mouse models dramatically show that caveolae and caveolins play a prominent role in various human patho-biological conditions, especially those related to the cardiovascular system. These disease phenotypes include: atherosclerosis, cardiac hypertrophy, cardiomyopathy, pulmonary hypertension, and neointimal hyperplasia (smooth muscle cell proliferation). In addition, caveolins play a significant role in other disease phenotypes, such as cancer, diabetes, bladder dysfunction, and muscular dystrophy, as we discuss in this review. Thus, caveolin-deficient mice will serve as important new animal models to dissect the intricate role of caveolae and caveolins in the pathogenesis of human diseases.</description><subject>Animals</subject><subject>Arteriosclerosis - genetics</subject><subject>atherosclerosis</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>cancer</subject><subject>Cardiology. Vascular system</subject><subject>Cardiomyopathies - genetics</subject><subject>cardiomyopathy</subject><subject>Caveolae - physiology</subject><subject>Caveolin 1</subject><subject>Caveolins - genetics</subject><subject>Disease Models, Animal</subject><subject>Endocytosis - genetics</subject><subject>Endocytosis - physiology</subject><subject>Female Urogenital Diseases - genetics</subject><subject>General aspects</subject><subject>genetic disease</subject><subject>Humans</subject><subject>Lung Diseases - genetics</subject><subject>Male Urogenital Diseases</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitogen-Activated Protein Kinases - physiology</subject><subject>mouse animal models</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscular Dystrophies - genetics</subject><subject>muscular dystrophy</subject><subject>Neoplasms - genetics</subject><subject>Signal Transduction - genetics</subject><subject>src-Family Kinases - physiology</subject><subject>vascular disease</subject><issn>0785-3890</issn><issn>1365-2060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LxDAQxYMo7rr6AbxIL3qrTtI2SdWLLP6DBS96Lkk6cbukjSZdZb-9XXZFRPA0A_N7j3mPkGMK5xQkXICQRSZLyCkAlbIsd8iYZrxIGXDYJeP1PV0DI3IQ4wIAmKCwT0a0EFzKDMaEPs8xmaoP9K7pklfsMF4mNvg2Mehcohvv_Osq6X3SYt2YpsNDsmeVi3i0nRPycnf7PH1IZ0_3j9ObWWpyIfpUY665QpCsRm1lyU1e20JCrtFqxkRZl4iKD5vCvMxrpi3wmutCigIFmmxCzja-b8G_LzH2VdvE9VOqQ7-MFReMc1bKAaQb0AQfY0BbvYWmVWFVUajWPVV_eho0J1vzpR6C_Si2xQzA6RZQ0Shng-pME384nmVMcjFw1xuu6awPrfr0wdVVr1bOh29R9t8fV7_kc1SunxsVsFr4ZeiGgv9J8QVsGpR6</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Williams, Terence M</creator><creator>Lisanti, Michael P</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>The Caveolin genes: from cell biology to medicine</title><author>Williams, Terence M ; Lisanti, Michael P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-be4b6ae082debf896c4df5804befb2279d9eea6227ae494d2bf06d6b5875e7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Arteriosclerosis - genetics</topic><topic>atherosclerosis</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>cancer</topic><topic>Cardiology. Vascular system</topic><topic>Cardiomyopathies - genetics</topic><topic>cardiomyopathy</topic><topic>Caveolae - physiology</topic><topic>Caveolin 1</topic><topic>Caveolins - genetics</topic><topic>Disease Models, Animal</topic><topic>Endocytosis - genetics</topic><topic>Endocytosis - physiology</topic><topic>Female Urogenital Diseases - genetics</topic><topic>General aspects</topic><topic>genetic disease</topic><topic>Humans</topic><topic>Lung Diseases - genetics</topic><topic>Male Urogenital Diseases</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitogen-Activated Protein Kinases - physiology</topic><topic>mouse animal models</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscular Dystrophies - genetics</topic><topic>muscular dystrophy</topic><topic>Neoplasms - genetics</topic><topic>Signal Transduction - genetics</topic><topic>src-Family Kinases - physiology</topic><topic>vascular disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Terence M</creatorcontrib><creatorcontrib>Lisanti, Michael P</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of medicine (Helsinki)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Terence M</au><au>Lisanti, Michael P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Caveolin genes: from cell biology to medicine</atitle><jtitle>Annals of medicine (Helsinki)</jtitle><addtitle>Ann Med</addtitle><date>2004</date><risdate>2004</risdate><volume>36</volume><issue>8</issue><spage>584</spage><epage>595</epage><pages>584-595</pages><issn>0785-3890</issn><eissn>1365-2060</eissn><abstract>Caveolae are vesicular organelles (50-100-nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and signal transduction, as well as in cholesterol homeostasis. Caveolins are the structural proteins that are both necessary and sufficient for the formation of caveolae membrane domains. Caveolins 1 and 2 are co-expressed in most cell types, while the expression of caveolin-3 is muscle-specific. Thus, endothelial cells and fibroblasts are rich in caveolins 1 and 2, while cardiac myocytes and skeletal muscle fibers express caveolin-3. In contrast, smooth muscle cells express all three caveolins (Cav-1, -2, and -3). Mechanistically, caveolins interact with a variety of downstream signaling molecules, including Src-family tyrosine kinases, p42 44 mitogen activated protein (MAP) kinase, and endothelial nitric oxide synthase (eNOS), and hold these signal transducers in the inactive conformation until activation by an appropriate stimulus. In many ways, caveolins serve both to compartmentalize and regulate signaling. Recent studies using caveolin-deficient mouse models dramatically show that caveolae and caveolins play a prominent role in various human patho-biological conditions, especially those related to the cardiovascular system. These disease phenotypes include: atherosclerosis, cardiac hypertrophy, cardiomyopathy, pulmonary hypertension, and neointimal hyperplasia (smooth muscle cell proliferation). In addition, caveolins play a significant role in other disease phenotypes, such as cancer, diabetes, bladder dysfunction, and muscular dystrophy, as we discuss in this review. Thus, caveolin-deficient mice will serve as important new animal models to dissect the intricate role of caveolae and caveolins in the pathogenesis of human diseases.</abstract><cop>Basingstoke</cop><pub>Informa UK Ltd</pub><pmid>15768830</pmid><doi>10.1080/07853890410018899</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0785-3890
ispartof Annals of medicine (Helsinki), 2004, Vol.36 (8), p.584-595
issn 0785-3890
1365-2060
language eng
recordid cdi_pascalfrancis_primary_16332867
source MEDLINE; Taylor & Francis Online; EZB Electronic Journals Library
subjects Animals
Arteriosclerosis - genetics
atherosclerosis
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
cancer
Cardiology. Vascular system
Cardiomyopathies - genetics
cardiomyopathy
Caveolae - physiology
Caveolin 1
Caveolins - genetics
Disease Models, Animal
Endocytosis - genetics
Endocytosis - physiology
Female Urogenital Diseases - genetics
General aspects
genetic disease
Humans
Lung Diseases - genetics
Male Urogenital Diseases
Medical sciences
Mice
Mice, Knockout
Mitogen-Activated Protein Kinases - physiology
mouse animal models
Muscle, Smooth - cytology
Muscular Dystrophies - genetics
muscular dystrophy
Neoplasms - genetics
Signal Transduction - genetics
src-Family Kinases - physiology
vascular disease
title The Caveolin genes: from cell biology to medicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Caveolin%20genes:%20from%20cell%20biology%20to%20medicine&rft.jtitle=Annals%20of%20medicine%20(Helsinki)&rft.au=Williams,%20Terence%20M&rft.date=2004&rft.volume=36&rft.issue=8&rft.spage=584&rft.epage=595&rft.pages=584-595&rft.issn=0785-3890&rft.eissn=1365-2060&rft_id=info:doi/10.1080/07853890410018899&rft_dat=%3Cproquest_pasca%3E67266298%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67266298&rft_id=info:pmid/15768830&rfr_iscdi=true