Platelet deposition on stainless steel, spiral, and braided polylactide stents A comparative study

Platelets play a key role in (sub)acute thrombotic occlusion after stenting. We examined the possible differences between biodegradable polylactide (PLA) and stainless steel (SS) stents in platelet attachment and morphology after whole blood perfusion. PLA stents of different configurations (spiral/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thrombosis and haemostasis 2004-12, Vol.92 (6), p.1394-1401
Hauptverfasser: HIETALA, Eeva-Maija, MAASILTA, Paula, JUUTI, Hanne, NUUTINEN, Juha-Pekka, HARJULA, Ari L. J, SALMINEN, Ulla-Stina, LASSILA, Riitta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1401
container_issue 6
container_start_page 1394
container_title Thrombosis and haemostasis
container_volume 92
creator HIETALA, Eeva-Maija
MAASILTA, Paula
JUUTI, Hanne
NUUTINEN, Juha-Pekka
HARJULA, Ari L. J
SALMINEN, Ulla-Stina
LASSILA, Riitta
description Platelets play a key role in (sub)acute thrombotic occlusion after stenting. We examined the possible differences between biodegradable polylactide (PLA) and stainless steel (SS) stents in platelet attachment and morphology after whole blood perfusion. PLA stents of different configurations (spiral/braided) and polycaprolactone-polylactide (PCL-PLA)-coatings, or SS stents were implanted into a PVC tube (Ø 3.2 mm), with or without precoating of the tube with type-I collagen. PPACK (30 microM)-anticoagulated blood with (3)H-serotonin prelabeled platelets was perfused (flow rate: 30 ml/min, 90 s) over the stents. Platelet deposition was assessed by scintillation counting and morphology by scanning electron microscopy (SEM). To examine coagulation activation, plasma prothrombin fragments (F1 + 2) were measured before and after the perfusion. Protein deposition on PLA/SS stents was assessed at augmented shear forces mimicking coronary flow (rate: 60 ml/min, 60 s) under minimal anticoagulation (PPACK 1 microM). More platelets deposited on PLA stents than on SS stents under all study conditions (p < 0.03). Under anticoagulation (PPACK 30 microM) the generation of F1 + 2 remained unaltered. Under higher flow rate and limited anticoagulation SS stents accumulated 3.27 +/- 0.75 microg and PLA stents 5.25 +/- 1.74 microg of protein (Mean +/- SD, p
doi_str_mv 10.1160/TH04-02-0124
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16331018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67153462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-4aa323098a95687f47ff99973827e2c053ef7dccbfaa207a5787d68ba9b38e813</originalsourceid><addsrcrecordid>eNqtkc-L1TAQx4so7nP15ll60dNWk-Znj8uirrCghxW8hWma0kja1EyqvP_e1PdwwbMQmMzwYb7wmap6SclbSiV5d39LeEPahtCWP6oOrZCqkbr79rg6EMZJI1suLqpniN8JoZJ34ml1QYXQTPHuUPVfAmQXXK4Ht0b02celLg8z-CU4xPJzLlzVuPoEpcIy1H0CP7ihXmM4BrC5NDu2ZKyvaxvnFRJk_3MfbsPxefVkhIDuxbleVl8_vL-_uW3uPn_8dHN911guZW44AGsZ6TR0Qmo1cjWOXdcpplvlWksEc6MarO1HgJYoEEqrQeoeup5ppym7rN6c9q4p_tgcZjN7tC4EWFzc0EhFBeOyLeDVCbQpIiY3mjX5GdLRUGJ2p2Z3akhrdqcFf3Xeu_WzGx7gs8QCvD4DgBbCmGCxHh84yRglVBfOnzi0E-QMm0t_oTylOPflAGiKYTOBm2O5wd7buPxxayDZqVg1HnFzRmlhZlg2tMmv2bCOC4NT_GWmPIeSZf9jFq7Oegj_5rHfMSXQ0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67153462</pqid></control><display><type>article</type><title>Platelet deposition on stainless steel, spiral, and braided polylactide stents A comparative study</title><source>Thieme - Connect here FIRST to enable access</source><source>MEDLINE</source><creator>HIETALA, Eeva-Maija ; MAASILTA, Paula ; JUUTI, Hanne ; NUUTINEN, Juha-Pekka ; HARJULA, Ari L. J ; SALMINEN, Ulla-Stina ; LASSILA, Riitta</creator><creatorcontrib>HIETALA, Eeva-Maija ; MAASILTA, Paula ; JUUTI, Hanne ; NUUTINEN, Juha-Pekka ; HARJULA, Ari L. J ; SALMINEN, Ulla-Stina ; LASSILA, Riitta</creatorcontrib><description>Platelets play a key role in (sub)acute thrombotic occlusion after stenting. We examined the possible differences between biodegradable polylactide (PLA) and stainless steel (SS) stents in platelet attachment and morphology after whole blood perfusion. PLA stents of different configurations (spiral/braided) and polycaprolactone-polylactide (PCL-PLA)-coatings, or SS stents were implanted into a PVC tube (Ø 3.2 mm), with or without precoating of the tube with type-I collagen. PPACK (30 microM)-anticoagulated blood with (3)H-serotonin prelabeled platelets was perfused (flow rate: 30 ml/min, 90 s) over the stents. Platelet deposition was assessed by scintillation counting and morphology by scanning electron microscopy (SEM). To examine coagulation activation, plasma prothrombin fragments (F1 + 2) were measured before and after the perfusion. Protein deposition on PLA/SS stents was assessed at augmented shear forces mimicking coronary flow (rate: 60 ml/min, 60 s) under minimal anticoagulation (PPACK 1 microM). More platelets deposited on PLA stents than on SS stents under all study conditions (p &lt; 0.03). Under anticoagulation (PPACK 30 microM) the generation of F1 + 2 remained unaltered. Under higher flow rate and limited anticoagulation SS stents accumulated 3.27 +/- 0.75 microg and PLA stents 5.25 +/- 1.74 microg of protein (Mean +/- SD, p &lt;0.95). Among all biodegradable stents, the braided PLA stent coated with PCL-PLA-heparin accumulated the fewest platelets (p &lt; 0.02). In SEM, signs of platelet activation on braided heparin-coated PLA stents, when compared with uncoated braided PLA/SS stents, appeared modest. In conclusion, PCL-PLAheparin coating of biodegradable stents may enhance their hemocompatibility, expressed by less platelet deposition. Nevertheless, materials, design, and coating techniques of biodegradable stents must be further developed.</description><identifier>ISSN: 0340-6245</identifier><identifier>EISSN: 2567-689X</identifier><identifier>DOI: 10.1160/TH04-02-0124</identifier><identifier>PMID: 15583749</identifier><identifier>CODEN: THHADQ</identifier><language>eng</language><publisher>Stuttgart: Schattauer Verlag für Medizin und Naturwissenschaften</publisher><subject>Amino Acid Chloromethyl Ketones - chemistry ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Blood coagulation. Blood cells ; Blood Platelets - cytology ; Blood Platelets - physiology ; Blood Platelets - ultrastructure ; Cell Culture Techniques - instrumentation ; Collagen - metabolism ; Collagen Type I - chemistry ; Coronary Vessels - metabolism ; Fundamental and applied biological sciences. Psychology ; Hematologic and hematopoietic diseases ; Heparin - chemistry ; Humans ; Medical sciences ; Microscopy, Electron, Scanning ; Molecular and cellular biology ; Perfusion ; Platelet Adhesiveness ; Platelet diseases and coagulopathies ; Polyesters - chemistry ; Polyvinyl Chloride - chemistry ; Prothrombin - biosynthesis ; Serotonin - metabolism ; Stainless Steel - chemistry ; Stents ; Time Factors</subject><ispartof>Thrombosis and haemostasis, 2004-12, Vol.92 (6), p.1394-1401</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16331018$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15583749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HIETALA, Eeva-Maija</creatorcontrib><creatorcontrib>MAASILTA, Paula</creatorcontrib><creatorcontrib>JUUTI, Hanne</creatorcontrib><creatorcontrib>NUUTINEN, Juha-Pekka</creatorcontrib><creatorcontrib>HARJULA, Ari L. J</creatorcontrib><creatorcontrib>SALMINEN, Ulla-Stina</creatorcontrib><creatorcontrib>LASSILA, Riitta</creatorcontrib><title>Platelet deposition on stainless steel, spiral, and braided polylactide stents A comparative study</title><title>Thrombosis and haemostasis</title><addtitle>Thromb Haemost</addtitle><description>Platelets play a key role in (sub)acute thrombotic occlusion after stenting. We examined the possible differences between biodegradable polylactide (PLA) and stainless steel (SS) stents in platelet attachment and morphology after whole blood perfusion. PLA stents of different configurations (spiral/braided) and polycaprolactone-polylactide (PCL-PLA)-coatings, or SS stents were implanted into a PVC tube (Ø 3.2 mm), with or without precoating of the tube with type-I collagen. PPACK (30 microM)-anticoagulated blood with (3)H-serotonin prelabeled platelets was perfused (flow rate: 30 ml/min, 90 s) over the stents. Platelet deposition was assessed by scintillation counting and morphology by scanning electron microscopy (SEM). To examine coagulation activation, plasma prothrombin fragments (F1 + 2) were measured before and after the perfusion. Protein deposition on PLA/SS stents was assessed at augmented shear forces mimicking coronary flow (rate: 60 ml/min, 60 s) under minimal anticoagulation (PPACK 1 microM). More platelets deposited on PLA stents than on SS stents under all study conditions (p &lt; 0.03). Under anticoagulation (PPACK 30 microM) the generation of F1 + 2 remained unaltered. Under higher flow rate and limited anticoagulation SS stents accumulated 3.27 +/- 0.75 microg and PLA stents 5.25 +/- 1.74 microg of protein (Mean +/- SD, p &lt;0.95). Among all biodegradable stents, the braided PLA stent coated with PCL-PLA-heparin accumulated the fewest platelets (p &lt; 0.02). In SEM, signs of platelet activation on braided heparin-coated PLA stents, when compared with uncoated braided PLA/SS stents, appeared modest. In conclusion, PCL-PLAheparin coating of biodegradable stents may enhance their hemocompatibility, expressed by less platelet deposition. Nevertheless, materials, design, and coating techniques of biodegradable stents must be further developed.</description><subject>Amino Acid Chloromethyl Ketones - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Blood coagulation. Blood cells</subject><subject>Blood Platelets - cytology</subject><subject>Blood Platelets - physiology</subject><subject>Blood Platelets - ultrastructure</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Collagen - metabolism</subject><subject>Collagen Type I - chemistry</subject><subject>Coronary Vessels - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Heparin - chemistry</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molecular and cellular biology</subject><subject>Perfusion</subject><subject>Platelet Adhesiveness</subject><subject>Platelet diseases and coagulopathies</subject><subject>Polyesters - chemistry</subject><subject>Polyvinyl Chloride - chemistry</subject><subject>Prothrombin - biosynthesis</subject><subject>Serotonin - metabolism</subject><subject>Stainless Steel - chemistry</subject><subject>Stents</subject><subject>Time Factors</subject><issn>0340-6245</issn><issn>2567-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqtkc-L1TAQx4so7nP15ll60dNWk-Znj8uirrCghxW8hWma0kja1EyqvP_e1PdwwbMQmMzwYb7wmap6SclbSiV5d39LeEPahtCWP6oOrZCqkbr79rg6EMZJI1suLqpniN8JoZJ34ml1QYXQTPHuUPVfAmQXXK4Ht0b02celLg8z-CU4xPJzLlzVuPoEpcIy1H0CP7ihXmM4BrC5NDu2ZKyvaxvnFRJk_3MfbsPxefVkhIDuxbleVl8_vL-_uW3uPn_8dHN911guZW44AGsZ6TR0Qmo1cjWOXdcpplvlWksEc6MarO1HgJYoEEqrQeoeup5ppym7rN6c9q4p_tgcZjN7tC4EWFzc0EhFBeOyLeDVCbQpIiY3mjX5GdLRUGJ2p2Z3akhrdqcFf3Xeu_WzGx7gs8QCvD4DgBbCmGCxHh84yRglVBfOnzi0E-QMm0t_oTylOPflAGiKYTOBm2O5wd7buPxxayDZqVg1HnFzRmlhZlg2tMmv2bCOC4NT_GWmPIeSZf9jFq7Oegj_5rHfMSXQ0Q</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>HIETALA, Eeva-Maija</creator><creator>MAASILTA, Paula</creator><creator>JUUTI, Hanne</creator><creator>NUUTINEN, Juha-Pekka</creator><creator>HARJULA, Ari L. J</creator><creator>SALMINEN, Ulla-Stina</creator><creator>LASSILA, Riitta</creator><general>Schattauer Verlag für Medizin und Naturwissenschaften</general><general>Schattauer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Platelet deposition on stainless steel, spiral, and braided polylactide stents A comparative study</title><author>HIETALA, Eeva-Maija ; MAASILTA, Paula ; JUUTI, Hanne ; NUUTINEN, Juha-Pekka ; HARJULA, Ari L. J ; SALMINEN, Ulla-Stina ; LASSILA, Riitta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-4aa323098a95687f47ff99973827e2c053ef7dccbfaa207a5787d68ba9b38e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Chloromethyl Ketones - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Blood coagulation. Blood cells</topic><topic>Blood Platelets - cytology</topic><topic>Blood Platelets - physiology</topic><topic>Blood Platelets - ultrastructure</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Collagen - metabolism</topic><topic>Collagen Type I - chemistry</topic><topic>Coronary Vessels - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Heparin - chemistry</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molecular and cellular biology</topic><topic>Perfusion</topic><topic>Platelet Adhesiveness</topic><topic>Platelet diseases and coagulopathies</topic><topic>Polyesters - chemistry</topic><topic>Polyvinyl Chloride - chemistry</topic><topic>Prothrombin - biosynthesis</topic><topic>Serotonin - metabolism</topic><topic>Stainless Steel - chemistry</topic><topic>Stents</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HIETALA, Eeva-Maija</creatorcontrib><creatorcontrib>MAASILTA, Paula</creatorcontrib><creatorcontrib>JUUTI, Hanne</creatorcontrib><creatorcontrib>NUUTINEN, Juha-Pekka</creatorcontrib><creatorcontrib>HARJULA, Ari L. J</creatorcontrib><creatorcontrib>SALMINEN, Ulla-Stina</creatorcontrib><creatorcontrib>LASSILA, Riitta</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Thrombosis and haemostasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HIETALA, Eeva-Maija</au><au>MAASILTA, Paula</au><au>JUUTI, Hanne</au><au>NUUTINEN, Juha-Pekka</au><au>HARJULA, Ari L. J</au><au>SALMINEN, Ulla-Stina</au><au>LASSILA, Riitta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Platelet deposition on stainless steel, spiral, and braided polylactide stents A comparative study</atitle><jtitle>Thrombosis and haemostasis</jtitle><addtitle>Thromb Haemost</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>92</volume><issue>6</issue><spage>1394</spage><epage>1401</epage><pages>1394-1401</pages><issn>0340-6245</issn><eissn>2567-689X</eissn><coden>THHADQ</coden><abstract>Platelets play a key role in (sub)acute thrombotic occlusion after stenting. We examined the possible differences between biodegradable polylactide (PLA) and stainless steel (SS) stents in platelet attachment and morphology after whole blood perfusion. PLA stents of different configurations (spiral/braided) and polycaprolactone-polylactide (PCL-PLA)-coatings, or SS stents were implanted into a PVC tube (Ø 3.2 mm), with or without precoating of the tube with type-I collagen. PPACK (30 microM)-anticoagulated blood with (3)H-serotonin prelabeled platelets was perfused (flow rate: 30 ml/min, 90 s) over the stents. Platelet deposition was assessed by scintillation counting and morphology by scanning electron microscopy (SEM). To examine coagulation activation, plasma prothrombin fragments (F1 + 2) were measured before and after the perfusion. Protein deposition on PLA/SS stents was assessed at augmented shear forces mimicking coronary flow (rate: 60 ml/min, 60 s) under minimal anticoagulation (PPACK 1 microM). More platelets deposited on PLA stents than on SS stents under all study conditions (p &lt; 0.03). Under anticoagulation (PPACK 30 microM) the generation of F1 + 2 remained unaltered. Under higher flow rate and limited anticoagulation SS stents accumulated 3.27 +/- 0.75 microg and PLA stents 5.25 +/- 1.74 microg of protein (Mean +/- SD, p &lt;0.95). Among all biodegradable stents, the braided PLA stent coated with PCL-PLA-heparin accumulated the fewest platelets (p &lt; 0.02). In SEM, signs of platelet activation on braided heparin-coated PLA stents, when compared with uncoated braided PLA/SS stents, appeared modest. In conclusion, PCL-PLAheparin coating of biodegradable stents may enhance their hemocompatibility, expressed by less platelet deposition. Nevertheless, materials, design, and coating techniques of biodegradable stents must be further developed.</abstract><cop>Stuttgart</cop><pub>Schattauer Verlag für Medizin und Naturwissenschaften</pub><pmid>15583749</pmid><doi>10.1160/TH04-02-0124</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-6245
ispartof Thrombosis and haemostasis, 2004-12, Vol.92 (6), p.1394-1401
issn 0340-6245
2567-689X
language eng
recordid cdi_pascalfrancis_primary_16331018
source Thieme - Connect here FIRST to enable access; MEDLINE
subjects Amino Acid Chloromethyl Ketones - chemistry
Biocompatible Materials - chemistry
Biological and medical sciences
Blood coagulation. Blood cells
Blood Platelets - cytology
Blood Platelets - physiology
Blood Platelets - ultrastructure
Cell Culture Techniques - instrumentation
Collagen - metabolism
Collagen Type I - chemistry
Coronary Vessels - metabolism
Fundamental and applied biological sciences. Psychology
Hematologic and hematopoietic diseases
Heparin - chemistry
Humans
Medical sciences
Microscopy, Electron, Scanning
Molecular and cellular biology
Perfusion
Platelet Adhesiveness
Platelet diseases and coagulopathies
Polyesters - chemistry
Polyvinyl Chloride - chemistry
Prothrombin - biosynthesis
Serotonin - metabolism
Stainless Steel - chemistry
Stents
Time Factors
title Platelet deposition on stainless steel, spiral, and braided polylactide stents A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Platelet%20deposition%20on%20stainless%20steel,%20spiral,%20and%20braided%20polylactide%20stents%20A%20comparative%20study&rft.jtitle=Thrombosis%20and%20haemostasis&rft.au=HIETALA,%20Eeva-Maija&rft.date=2004-12-01&rft.volume=92&rft.issue=6&rft.spage=1394&rft.epage=1401&rft.pages=1394-1401&rft.issn=0340-6245&rft.eissn=2567-689X&rft.coden=THHADQ&rft_id=info:doi/10.1160/TH04-02-0124&rft_dat=%3Cproquest_pasca%3E67153462%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67153462&rft_id=info:pmid/15583749&rfr_iscdi=true