Monte Carlo studies of the dipolar spin ice model

We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2004-11, Vol.16 (43), p.R1277-R1319
Hauptverfasser: Melko, Roger G, Gingras, Michel J P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R1319
container_issue 43
container_start_page R1277
container_title Journal of physics. Condensed matter
container_volume 16
creator Melko, Roger G
Gingras, Michel J P
description We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.
doi_str_mv 10.1088/0953-8984/16/43/R02
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16211223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29864123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKu_wE02uhCmk-_JLKVYFSqCKLgLIR8YSSdjMl34753aUheKq7d45x7euwCcYzTDSMoatZxWspWsxqJmtH5C5ABMMBW4Eky-HoLJnjgGJ6W8I4SYpGwC8EPqBgfnOscEy7C2wRWYPBzeHLShT1FnWPrQwWAcXCXr4ik48joWd7abU_CyuHme31XLx9v7-fWyMozJoWotEoxRz1DjZNP4VkuLveFUNKjhyFjrKBeItJqSFkvBsWfOIc-FaXjjOZ2Cy623z-lj7cqgVqEYF6PuXFoXRVopGCZ0BOkWNDmVkp1XfQ4rnT8VRmpTj9o8rzbPKywUo2qsZ0xd7PS6GB191p0J5ScqCMbk23615ULq99s_hKq3foRnv-H_rvgCl7B-DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29864123</pqid></control><display><type>article</type><title>Monte Carlo studies of the dipolar spin ice model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Melko, Roger G ; Gingras, Michel J P</creator><creatorcontrib>Melko, Roger G ; Gingras, Michel J P</creatorcontrib><description>We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/16/43/R02</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; General theory and models of magnetic ordering ; Magnetic properties and materials ; Physics</subject><ispartof>Journal of physics. Condensed matter, 2004-11, Vol.16 (43), p.R1277-R1319</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</citedby><cites>FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/16/43/R02/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16211223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Melko, Roger G</creatorcontrib><creatorcontrib>Gingras, Michel J P</creatorcontrib><title>Monte Carlo studies of the dipolar spin ice model</title><title>Journal of physics. Condensed matter</title><description>We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>General theory and models of magnetic ordering</subject><subject>Magnetic properties and materials</subject><subject>Physics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKu_wE02uhCmk-_JLKVYFSqCKLgLIR8YSSdjMl34753aUheKq7d45x7euwCcYzTDSMoatZxWspWsxqJmtH5C5ABMMBW4Eky-HoLJnjgGJ6W8I4SYpGwC8EPqBgfnOscEy7C2wRWYPBzeHLShT1FnWPrQwWAcXCXr4ik48joWd7abU_CyuHme31XLx9v7-fWyMozJoWotEoxRz1DjZNP4VkuLveFUNKjhyFjrKBeItJqSFkvBsWfOIc-FaXjjOZ2Cy623z-lj7cqgVqEYF6PuXFoXRVopGCZ0BOkWNDmVkp1XfQ4rnT8VRmpTj9o8rzbPKywUo2qsZ0xd7PS6GB191p0J5ScqCMbk23615ULq99s_hKq3foRnv-H_rvgCl7B-DQ</recordid><startdate>20041103</startdate><enddate>20041103</enddate><creator>Melko, Roger G</creator><creator>Gingras, Michel J P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041103</creationdate><title>Monte Carlo studies of the dipolar spin ice model</title><author>Melko, Roger G ; Gingras, Michel J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>General theory and models of magnetic ordering</topic><topic>Magnetic properties and materials</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melko, Roger G</creatorcontrib><creatorcontrib>Gingras, Michel J P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melko, Roger G</au><au>Gingras, Michel J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo studies of the dipolar spin ice model</atitle><jtitle>Journal of physics. Condensed matter</jtitle><date>2004-11-03</date><risdate>2004</risdate><volume>16</volume><issue>43</issue><spage>R1277</spage><epage>R1319</epage><pages>R1277-R1319</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-8984/16/43/R02</doi></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2004-11, Vol.16 (43), p.R1277-R1319
issn 0953-8984
1361-648X
language eng
recordid cdi_pascalfrancis_primary_16211223
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
General theory and models of magnetic ordering
Magnetic properties and materials
Physics
title Monte Carlo studies of the dipolar spin ice model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20studies%20of%20the%20dipolar%20spin%20ice%20model&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Melko,%20Roger%20G&rft.date=2004-11-03&rft.volume=16&rft.issue=43&rft.spage=R1277&rft.epage=R1319&rft.pages=R1277-R1319&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/16/43/R02&rft_dat=%3Cproquest_pasca%3E29864123%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29864123&rft_id=info:pmid/&rfr_iscdi=true