Monte Carlo studies of the dipolar spin ice model
We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopic...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2004-11, Vol.16 (43), p.R1277-R1319 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | R1319 |
---|---|
container_issue | 43 |
container_start_page | R1277 |
container_title | Journal of physics. Condensed matter |
container_volume | 16 |
creator | Melko, Roger G Gingras, Michel J P |
description | We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction. |
doi_str_mv | 10.1088/0953-8984/16/43/R02 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16211223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29864123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKu_wE02uhCmk-_JLKVYFSqCKLgLIR8YSSdjMl34753aUheKq7d45x7euwCcYzTDSMoatZxWspWsxqJmtH5C5ABMMBW4Eky-HoLJnjgGJ6W8I4SYpGwC8EPqBgfnOscEy7C2wRWYPBzeHLShT1FnWPrQwWAcXCXr4ik48joWd7abU_CyuHme31XLx9v7-fWyMozJoWotEoxRz1DjZNP4VkuLveFUNKjhyFjrKBeItJqSFkvBsWfOIc-FaXjjOZ2Cy623z-lj7cqgVqEYF6PuXFoXRVopGCZ0BOkWNDmVkp1XfQ4rnT8VRmpTj9o8rzbPKywUo2qsZ0xd7PS6GB191p0J5ScqCMbk23615ULq99s_hKq3foRnv-H_rvgCl7B-DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29864123</pqid></control><display><type>article</type><title>Monte Carlo studies of the dipolar spin ice model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Melko, Roger G ; Gingras, Michel J P</creator><creatorcontrib>Melko, Roger G ; Gingras, Michel J P</creatorcontrib><description>We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/16/43/R02</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; General theory and models of magnetic ordering ; Magnetic properties and materials ; Physics</subject><ispartof>Journal of physics. Condensed matter, 2004-11, Vol.16 (43), p.R1277-R1319</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</citedby><cites>FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/16/43/R02/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16211223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Melko, Roger G</creatorcontrib><creatorcontrib>Gingras, Michel J P</creatorcontrib><title>Monte Carlo studies of the dipolar spin ice model</title><title>Journal of physics. Condensed matter</title><description>We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>General theory and models of magnetic ordering</subject><subject>Magnetic properties and materials</subject><subject>Physics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKu_wE02uhCmk-_JLKVYFSqCKLgLIR8YSSdjMl34753aUheKq7d45x7euwCcYzTDSMoatZxWspWsxqJmtH5C5ABMMBW4Eky-HoLJnjgGJ6W8I4SYpGwC8EPqBgfnOscEy7C2wRWYPBzeHLShT1FnWPrQwWAcXCXr4ik48joWd7abU_CyuHme31XLx9v7-fWyMozJoWotEoxRz1DjZNP4VkuLveFUNKjhyFjrKBeItJqSFkvBsWfOIc-FaXjjOZ2Cy623z-lj7cqgVqEYF6PuXFoXRVopGCZ0BOkWNDmVkp1XfQ4rnT8VRmpTj9o8rzbPKywUo2qsZ0xd7PS6GB191p0J5ScqCMbk23615ULq99s_hKq3foRnv-H_rvgCl7B-DQ</recordid><startdate>20041103</startdate><enddate>20041103</enddate><creator>Melko, Roger G</creator><creator>Gingras, Michel J P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041103</creationdate><title>Monte Carlo studies of the dipolar spin ice model</title><author>Melko, Roger G ; Gingras, Michel J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9d06443f407e877f9a8d1fc53670750cdde356029a32918651f4ee0f56c757f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>General theory and models of magnetic ordering</topic><topic>Magnetic properties and materials</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melko, Roger G</creatorcontrib><creatorcontrib>Gingras, Michel J P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melko, Roger G</au><au>Gingras, Michel J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo studies of the dipolar spin ice model</atitle><jtitle>Journal of physics. Condensed matter</jtitle><date>2004-11-03</date><risdate>2004</risdate><volume>16</volume><issue>43</issue><spage>R1277</spage><epage>R1319</epage><pages>R1277-R1319</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We present a detailed overview of numerical Monte Carlo studies of the dipolar spin ice model, which has been shown to be an excellent quantitative descriptor of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that the dipolar spin ice model can reproduce an effective quasi-macroscopically degenerate ground state and spin ice behaviour of these materials when the long range nature of dipole-dipole interaction is handled carefully using Ewald summation techniques. This degeneracy is, however, ultimately lifted at low temperature. The long range ordered state is identified via Monte Carlo simulation techniques. Finally, we investigate the behaviour of the dipolar spin ice model in an applied magnetic field and compare our predictions to experimental results. We find that a number of different long range ordered ground states are favoured by the model, depending on field direction.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-8984/16/43/R02</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2004-11, Vol.16 (43), p.R1277-R1319 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pascalfrancis_primary_16211223 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology General theory and models of magnetic ordering Magnetic properties and materials Physics |
title | Monte Carlo studies of the dipolar spin ice model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20studies%20of%20the%20dipolar%20spin%20ice%20model&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Melko,%20Roger%20G&rft.date=2004-11-03&rft.volume=16&rft.issue=43&rft.spage=R1277&rft.epage=R1319&rft.pages=R1277-R1319&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/16/43/R02&rft_dat=%3Cproquest_pasca%3E29864123%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29864123&rft_id=info:pmid/&rfr_iscdi=true |