Image contrast enhancement based on a histogram transformation of local standard deviation

The adaptive contrast enhancement (ACE) algorithm, which uses contrast gains (CGs) to adjust the high-frequency components of images, is a well-known technique for medical image processing. Conventionally, the CG is either a constant or inversely proportional to the local standard deviation (LSD). H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1998-08, Vol.17 (4), p.518-531
Hauptverfasser: CHANG, D.-C, WU, W.-R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue 4
container_start_page 518
container_title IEEE transactions on medical imaging
container_volume 17
creator CHANG, D.-C
WU, W.-R
description The adaptive contrast enhancement (ACE) algorithm, which uses contrast gains (CGs) to adjust the high-frequency components of images, is a well-known technique for medical image processing. Conventionally, the CG is either a constant or inversely proportional to the local standard deviation (LSD). However, it is known that conventional approaches entail noise overenhancement and ringing artifacts. In this paper, the authors present a new ACE algorithm that eliminates these problems. First, a mathematical model for the LSD distribution is proposed by extending Hunt's (1976) image model. Then, the CG is formulated as a function of the LSD. The function, which is nonlinear, is determined by the transformation between the LSD histogram and a desired LSD distribution. Using the authors' formulation, it can be shown that conventional ACEs use linear functions to compute the new CGs. It is the proposed nonlinear function that produces an adequate CG resulting in little noise overenhancement and fewer ringing artifacts. Finally, simulations using some X-ray images are provided to demonstrate the effectiveness of the the authors' new algorithm.
doi_str_mv 10.1109/42.730397
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1620317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>730397</ieee_id><sourcerecordid>70101950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-18b0156bc382bfb9137f3f937e096e4d34170e02ea72bd0db55af0e10ee541d3</originalsourceid><addsrcrecordid>eNqNkcFL5DAUxoPsMo6jB68LQg4i7KH6XtI0zVFEXUHYyxyWvZS0eRm7tI2bdIT97-04RY_uJe_w-_EFvo-xU4RLRDBXubjUEqTRB2yJSpWZUPmvL2wJQpcZQCEO2VFKfwAwV2AWbGHKXEkol-z3Q283xJswjNGmkdPwZIeGehpGXttEjoeBW_7UpjFsou35pA3Jh9jbsZ1Q8LwLje14Gu3gbHTc0Uv7xo7ZV2-7RCfzXbH13e365kf2-PP-4eb6MWukgTHDsgZURd3IUtS-Nii1l95ITWAKyp3MUQOBIKtF7cDVSlkPhECkcnRyxS72sc8x_N1SGqu-TQ11nR0obFOlAQGNgk9FUUpdFOV_iDg1jdO7Yt_3YhNDSpF89Rzb3sZ_FUK1G6bKRbUfZnLP5tBt3ZN7N-clJn4-c5umPv1Uc9Omj8BCgMRdzLe91hLRO53_eAXWKp0a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21397121</pqid></control><display><type>article</type><title>Image contrast enhancement based on a histogram transformation of local standard deviation</title><source>IEEE Electronic Library (IEL)</source><creator>CHANG, D.-C ; WU, W.-R</creator><creatorcontrib>CHANG, D.-C ; WU, W.-R</creatorcontrib><description>The adaptive contrast enhancement (ACE) algorithm, which uses contrast gains (CGs) to adjust the high-frequency components of images, is a well-known technique for medical image processing. Conventionally, the CG is either a constant or inversely proportional to the local standard deviation (LSD). However, it is known that conventional approaches entail noise overenhancement and ringing artifacts. In this paper, the authors present a new ACE algorithm that eliminates these problems. First, a mathematical model for the LSD distribution is proposed by extending Hunt's (1976) image model. Then, the CG is formulated as a function of the LSD. The function, which is nonlinear, is determined by the transformation between the LSD histogram and a desired LSD distribution. Using the authors' formulation, it can be shown that conventional ACEs use linear functions to compute the new CGs. It is the proposed nonlinear function that produces an adequate CG resulting in little noise overenhancement and fewer ringing artifacts. Finally, simulations using some X-ray images are provided to demonstrate the effectiveness of the the authors' new algorithm.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.730397</identifier><identifier>PMID: 9845308</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Attenuation ; Biological and medical sciences ; Biomedical image processing ; Biomedical imaging ; Character generation ; Computational modeling ; Computerized, statistical medical data processing and models in biomedicine ; Diagnostic radiography ; General aspects. Methods ; Histograms ; Humans ; Image enhancement ; Investigative techniques, diagnostic techniques (general aspects) ; Mathematical model ; Mathematical models ; Mathematical transformations ; Medical diagnostic imaging ; Medical sciences ; Miscellaneous. Technology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiographic Image Enhancement - methods ; Radiography, Thoracic - methods ; Statistical methods ; X ray radiography ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 1998-08, Vol.17 (4), p.518-531</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-18b0156bc382bfb9137f3f937e096e4d34170e02ea72bd0db55af0e10ee541d3</citedby><cites>FETCH-LOGICAL-c390t-18b0156bc382bfb9137f3f937e096e4d34170e02ea72bd0db55af0e10ee541d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/730397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/730397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1620317$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9845308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CHANG, D.-C</creatorcontrib><creatorcontrib>WU, W.-R</creatorcontrib><title>Image contrast enhancement based on a histogram transformation of local standard deviation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The adaptive contrast enhancement (ACE) algorithm, which uses contrast gains (CGs) to adjust the high-frequency components of images, is a well-known technique for medical image processing. Conventionally, the CG is either a constant or inversely proportional to the local standard deviation (LSD). However, it is known that conventional approaches entail noise overenhancement and ringing artifacts. In this paper, the authors present a new ACE algorithm that eliminates these problems. First, a mathematical model for the LSD distribution is proposed by extending Hunt's (1976) image model. Then, the CG is formulated as a function of the LSD. The function, which is nonlinear, is determined by the transformation between the LSD histogram and a desired LSD distribution. Using the authors' formulation, it can be shown that conventional ACEs use linear functions to compute the new CGs. It is the proposed nonlinear function that produces an adequate CG resulting in little noise overenhancement and fewer ringing artifacts. Finally, simulations using some X-ray images are provided to demonstrate the effectiveness of the the authors' new algorithm.</description><subject>Algorithms</subject><subject>Attenuation</subject><subject>Biological and medical sciences</subject><subject>Biomedical image processing</subject><subject>Biomedical imaging</subject><subject>Character generation</subject><subject>Computational modeling</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Diagnostic radiography</subject><subject>General aspects. Methods</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mathematical transformations</subject><subject>Medical diagnostic imaging</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiography, Thoracic - methods</subject><subject>Statistical methods</subject><subject>X ray radiography</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcFL5DAUxoPsMo6jB68LQg4i7KH6XtI0zVFEXUHYyxyWvZS0eRm7tI2bdIT97-04RY_uJe_w-_EFvo-xU4RLRDBXubjUEqTRB2yJSpWZUPmvL2wJQpcZQCEO2VFKfwAwV2AWbGHKXEkol-z3Q283xJswjNGmkdPwZIeGehpGXttEjoeBW_7UpjFsou35pA3Jh9jbsZ1Q8LwLje14Gu3gbHTc0Uv7xo7ZV2-7RCfzXbH13e365kf2-PP-4eb6MWukgTHDsgZURd3IUtS-Nii1l95ITWAKyp3MUQOBIKtF7cDVSlkPhECkcnRyxS72sc8x_N1SGqu-TQ11nR0obFOlAQGNgk9FUUpdFOV_iDg1jdO7Yt_3YhNDSpF89Rzb3sZ_FUK1G6bKRbUfZnLP5tBt3ZN7N-clJn4-c5umPv1Uc9Omj8BCgMRdzLe91hLRO53_eAXWKp0a</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>CHANG, D.-C</creator><creator>WU, W.-R</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19980801</creationdate><title>Image contrast enhancement based on a histogram transformation of local standard deviation</title><author>CHANG, D.-C ; WU, W.-R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-18b0156bc382bfb9137f3f937e096e4d34170e02ea72bd0db55af0e10ee541d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Attenuation</topic><topic>Biological and medical sciences</topic><topic>Biomedical image processing</topic><topic>Biomedical imaging</topic><topic>Character generation</topic><topic>Computational modeling</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Diagnostic radiography</topic><topic>General aspects. Methods</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mathematical transformations</topic><topic>Medical diagnostic imaging</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiography, Thoracic - methods</topic><topic>Statistical methods</topic><topic>X ray radiography</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>CHANG, D.-C</creatorcontrib><creatorcontrib>WU, W.-R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHANG, D.-C</au><au>WU, W.-R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image contrast enhancement based on a histogram transformation of local standard deviation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1998-08-01</date><risdate>1998</risdate><volume>17</volume><issue>4</issue><spage>518</spage><epage>531</epage><pages>518-531</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The adaptive contrast enhancement (ACE) algorithm, which uses contrast gains (CGs) to adjust the high-frequency components of images, is a well-known technique for medical image processing. Conventionally, the CG is either a constant or inversely proportional to the local standard deviation (LSD). However, it is known that conventional approaches entail noise overenhancement and ringing artifacts. In this paper, the authors present a new ACE algorithm that eliminates these problems. First, a mathematical model for the LSD distribution is proposed by extending Hunt's (1976) image model. Then, the CG is formulated as a function of the LSD. The function, which is nonlinear, is determined by the transformation between the LSD histogram and a desired LSD distribution. Using the authors' formulation, it can be shown that conventional ACEs use linear functions to compute the new CGs. It is the proposed nonlinear function that produces an adequate CG resulting in little noise overenhancement and fewer ringing artifacts. Finally, simulations using some X-ray images are provided to demonstrate the effectiveness of the the authors' new algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>9845308</pmid><doi>10.1109/42.730397</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1998-08, Vol.17 (4), p.518-531
issn 0278-0062
1558-254X
language eng
recordid cdi_pascalfrancis_primary_1620317
source IEEE Electronic Library (IEL)
subjects Algorithms
Attenuation
Biological and medical sciences
Biomedical image processing
Biomedical imaging
Character generation
Computational modeling
Computerized, statistical medical data processing and models in biomedicine
Diagnostic radiography
General aspects. Methods
Histograms
Humans
Image enhancement
Investigative techniques, diagnostic techniques (general aspects)
Mathematical model
Mathematical models
Mathematical transformations
Medical diagnostic imaging
Medical sciences
Miscellaneous. Technology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radiographic Image Enhancement - methods
Radiography, Thoracic - methods
Statistical methods
X ray radiography
X-ray imaging
title Image contrast enhancement based on a histogram transformation of local standard deviation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20contrast%20enhancement%20based%20on%20a%20histogram%20transformation%20of%20local%20standard%20deviation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=CHANG,%20D.-C&rft.date=1998-08-01&rft.volume=17&rft.issue=4&rft.spage=518&rft.epage=531&rft.pages=518-531&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.730397&rft_dat=%3Cproquest_RIE%3E70101950%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21397121&rft_id=info:pmid/9845308&rft_ieee_id=730397&rfr_iscdi=true