The ContextCam: Automated Point of Capture Video Annotation

Rich, structured annotations of video recordings enable interesting uses, but existing techniques for manual, and even semi-automated, tagging can be too time-consuming. We present in this paper the ContextCam, a prototype of a consumer video camera that provides point of capture annotation of time,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lecture notes in computer science 2004, p.301-318
Hauptverfasser: Patel, Shwetak N., Abowd, Gregory D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue
container_start_page 301
container_title Lecture notes in computer science
container_volume
creator Patel, Shwetak N.
Abowd, Gregory D.
description Rich, structured annotations of video recordings enable interesting uses, but existing techniques for manual, and even semi-automated, tagging can be too time-consuming. We present in this paper the ContextCam, a prototype of a consumer video camera that provides point of capture annotation of time, location, person presence and event information associated to recorded video. Both low- and high-level metadata are discovered via a variety of sensing and active tagging techniques, as well as through the application of machine learning techniques that use past annotations to suggest metadata for the current recordings. Furthermore, the ContextCam provides users with a minimally intrusive interface for correcting predicted high-level metadata during video recording.
doi_str_mv 10.1007/978-3-540-30119-6_18
format Article
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16194851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16194851</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-4f83302715c8bba00f3773980b9e9c0d6f0b2218325ca351af69a4421372b2f3</originalsourceid><addsrcrecordid>eNotkE1PwzAMhsOXxBj7Bxxy4RiI46RN4DRVfEmT4DBxjdIugcLWVG0mwb8n2_DFkt9Hlv0QcgX8Bjgvb02pGTIlOUMOYFhhQR-RC8yT_UAekwkUAAxRmhMyy_wuE8IoBadkkinBTCnxnMzG8YvnEgVKJSbkfvnpaRW75H9S5TZ3dL5NceOSX9G32HaJxkAr16ft4Ol7u_KRzrsuJpfa2F2Ss-DWo5_99ylZPj4sq2e2eH16qeYL1guhE5NBYz6gBNXounacByxLNJrXxpuGr4rAayFAo1CNQwUuFMZJKQBLUYuAU3J9WNu7sXHrMLiuaUfbD-3GDb82P26kVpA5ceDGHHUffrB1jN-jBW53Fm22YtFmL3Yvze4s4h-mV13L</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The ContextCam: Automated Point of Capture Video Annotation</title><source>Springer Books</source><creator>Patel, Shwetak N. ; Abowd, Gregory D.</creator><contributor>Davies, Nigel ; Mynatt, Elizabeth D. ; Siio, Itiro</contributor><creatorcontrib>Patel, Shwetak N. ; Abowd, Gregory D. ; Davies, Nigel ; Mynatt, Elizabeth D. ; Siio, Itiro</creatorcontrib><description>Rich, structured annotations of video recordings enable interesting uses, but existing techniques for manual, and even semi-automated, tagging can be too time-consuming. We present in this paper the ContextCam, a prototype of a consumer video camera that provides point of capture annotation of time, location, person presence and event information associated to recorded video. Both low- and high-level metadata are discovered via a variety of sensing and active tagging techniques, as well as through the application of machine learning techniques that use past annotations to suggest metadata for the current recordings. Furthermore, the ContextCam provides users with a minimally intrusive interface for correcting predicted high-level metadata during video recording.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540229551</identifier><identifier>ISBN: 3540229558</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540301194</identifier><identifier>EISBN: 9783540301196</identifier><identifier>DOI: 10.1007/978-3-540-30119-6_18</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Bayesian Classifier ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Event Information ; Exact sciences and technology ; Manual Annotation ; Software ; Video Annotation ; Video Scene</subject><ispartof>Lecture notes in computer science, 2004, p.301-318</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30119-6_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30119-6_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16194851$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Davies, Nigel</contributor><contributor>Mynatt, Elizabeth D.</contributor><contributor>Siio, Itiro</contributor><creatorcontrib>Patel, Shwetak N.</creatorcontrib><creatorcontrib>Abowd, Gregory D.</creatorcontrib><title>The ContextCam: Automated Point of Capture Video Annotation</title><title>Lecture notes in computer science</title><description>Rich, structured annotations of video recordings enable interesting uses, but existing techniques for manual, and even semi-automated, tagging can be too time-consuming. We present in this paper the ContextCam, a prototype of a consumer video camera that provides point of capture annotation of time, location, person presence and event information associated to recorded video. Both low- and high-level metadata are discovered via a variety of sensing and active tagging techniques, as well as through the application of machine learning techniques that use past annotations to suggest metadata for the current recordings. Furthermore, the ContextCam provides users with a minimally intrusive interface for correcting predicted high-level metadata during video recording.</description><subject>Applied sciences</subject><subject>Bayesian Classifier</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Event Information</subject><subject>Exact sciences and technology</subject><subject>Manual Annotation</subject><subject>Software</subject><subject>Video Annotation</subject><subject>Video Scene</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540229551</isbn><isbn>3540229558</isbn><isbn>3540301194</isbn><isbn>9783540301196</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwzAMhsOXxBj7Bxxy4RiI46RN4DRVfEmT4DBxjdIugcLWVG0mwb8n2_DFkt9Hlv0QcgX8Bjgvb02pGTIlOUMOYFhhQR-RC8yT_UAekwkUAAxRmhMyy_wuE8IoBadkkinBTCnxnMzG8YvnEgVKJSbkfvnpaRW75H9S5TZ3dL5NceOSX9G32HaJxkAr16ft4Ol7u_KRzrsuJpfa2F2Ss-DWo5_99ylZPj4sq2e2eH16qeYL1guhE5NBYz6gBNXounacByxLNJrXxpuGr4rAayFAo1CNQwUuFMZJKQBLUYuAU3J9WNu7sXHrMLiuaUfbD-3GDb82P26kVpA5ceDGHHUffrB1jN-jBW53Fm22YtFmL3Yvze4s4h-mV13L</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Patel, Shwetak N.</creator><creator>Abowd, Gregory D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>The ContextCam: Automated Point of Capture Video Annotation</title><author>Patel, Shwetak N. ; Abowd, Gregory D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-4f83302715c8bba00f3773980b9e9c0d6f0b2218325ca351af69a4421372b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bayesian Classifier</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Event Information</topic><topic>Exact sciences and technology</topic><topic>Manual Annotation</topic><topic>Software</topic><topic>Video Annotation</topic><topic>Video Scene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Shwetak N.</creatorcontrib><creatorcontrib>Abowd, Gregory D.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Lecture notes in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Shwetak N.</au><au>Abowd, Gregory D.</au><au>Davies, Nigel</au><au>Mynatt, Elizabeth D.</au><au>Siio, Itiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ContextCam: Automated Point of Capture Video Annotation</atitle><jtitle>Lecture notes in computer science</jtitle><date>2004</date><risdate>2004</risdate><spage>301</spage><epage>318</epage><pages>301-318</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540229551</isbn><isbn>3540229558</isbn><eisbn>3540301194</eisbn><eisbn>9783540301196</eisbn><abstract>Rich, structured annotations of video recordings enable interesting uses, but existing techniques for manual, and even semi-automated, tagging can be too time-consuming. We present in this paper the ContextCam, a prototype of a consumer video camera that provides point of capture annotation of time, location, person presence and event information associated to recorded video. Both low- and high-level metadata are discovered via a variety of sensing and active tagging techniques, as well as through the application of machine learning techniques that use past annotations to suggest metadata for the current recordings. Furthermore, the ContextCam provides users with a minimally intrusive interface for correcting predicted high-level metadata during video recording.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30119-6_18</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.301-318
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16194851
source Springer Books
subjects Applied sciences
Bayesian Classifier
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Event Information
Exact sciences and technology
Manual Annotation
Software
Video Annotation
Video Scene
title The ContextCam: Automated Point of Capture Video Annotation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ContextCam:%20Automated%20Point%20of%20Capture%20Video%20Annotation&rft.jtitle=Lecture%20notes%20in%20computer%20science&rft.au=Patel,%20Shwetak%20N.&rft.date=2004&rft.spage=301&rft.epage=318&rft.pages=301-318&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540229551&rft.isbn_list=3540229558&rft_id=info:doi/10.1007/978-3-540-30119-6_18&rft_dat=%3Cpascalfrancis_sprin%3E16194851%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540301194&rft.eisbn_list=9783540301196&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true