Fully Automated Approach to Broadcast News Transcription in Czech Language

In the paper we propose a complete scheme for automatic transcription of Czech TV news. The scheme first removes the music and noisy parts, then makes segmentation of the speech signal into speaker turns and consequently tries to decode and transcribe single utterances. We employ our own recognizer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nouza, Jan, Žďánský, Jindřich, David, Petr
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue
container_start_page 401
container_title
container_volume
creator Nouza, Jan
Žďánský, Jindřich
David, Petr
description In the paper we propose a complete scheme for automatic transcription of Czech TV news. The scheme first removes the music and noisy parts, then makes segmentation of the speech signal into speaker turns and consequently tries to decode and transcribe single utterances. We employ our own recognizer recently operating with a 200K-word lexicon and with a bigram language model. The overall recognition rate achieved on all the test data was 71.53%, that obtained on the read parts was 82.72%. The most serious recognition errors occur mainly in the segments that contain background music or extremely loud noise.
doi_str_mv 10.1007/978-3-540-30120-2_51
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16194695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16194695</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-bcb12db7e2a6fbfae3c3283078d07175730bce2fb31bf2f781ea2e7b86e0e76a3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhsOXxDT2DzjkwjGQ2G3THsfE-FAFl3GOkjQZha6tmk5o_HqyDeGLrdePLOsh5FrwW8G5vCtkzpClCWfIBXAGKhUnZBZjjOEhg1MyEZkQDDEpzv53gDwpsnMyiRSwQiZ4SWYhfPJYkMo0xQl5WW6bZkfn27Hb6NFVdN73Q6ftBx07eh-nyuow0lf3Hehq0G2wQ92PddfSuqWLHxfBUrfrrV67K3LhdRPc7K9PyfvyYbV4YuXb4_NiXrIeIB-ZsUZAZaQDnXnjtUOLkCOXecWlkKlEbqwDb1AYD17mwmlw0uSZ405mGqfk5ni318HqxsevbB1UP9QbPexUFFEkWZFGDo5ciKt27QZluu4rKMHVXqyKlhSq6EkdJKq9WPwF6vxmUA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fully Automated Approach to Broadcast News Transcription in Czech Language</title><source>Springer Books</source><creator>Nouza, Jan ; Žďánský, Jindřich ; David, Petr</creator><contributor>Pala, Karel ; Sojka, Petr ; Kopeček, Ivan</contributor><creatorcontrib>Nouza, Jan ; Žďánský, Jindřich ; David, Petr ; Pala, Karel ; Sojka, Petr ; Kopeček, Ivan</creatorcontrib><description>In the paper we propose a complete scheme for automatic transcription of Czech TV news. The scheme first removes the music and noisy parts, then makes segmentation of the speech signal into speaker turns and consequently tries to decode and transcribe single utterances. We employ our own recognizer recently operating with a 200K-word lexicon and with a bigram language model. The overall recognition rate achieved on all the test data was 71.53%, that obtained on the read parts was 82.72%. The most serious recognition errors occur mainly in the segments that contain background music or extremely loud noise.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540230496</identifier><identifier>ISBN: 3540230491</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540301202</identifier><identifier>EISBN: 3540301208</identifier><identifier>DOI: 10.1007/978-3-540-30120-2_51</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic Model ; Applied sciences ; Artificial intelligence ; Automatic Speech Recognition ; Bayesian Information Criterion ; Computer science; control theory; systems ; Exact sciences and technology ; Speech and sound recognition and synthesis. Linguistics ; Speech Recognition ; Speech Signal</subject><ispartof>Lecture notes in computer science, 2004, p.401-408</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30120-2_51$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30120-2_51$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16194695$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pala, Karel</contributor><contributor>Sojka, Petr</contributor><contributor>Kopeček, Ivan</contributor><creatorcontrib>Nouza, Jan</creatorcontrib><creatorcontrib>Žďánský, Jindřich</creatorcontrib><creatorcontrib>David, Petr</creatorcontrib><title>Fully Automated Approach to Broadcast News Transcription in Czech Language</title><title>Lecture notes in computer science</title><description>In the paper we propose a complete scheme for automatic transcription of Czech TV news. The scheme first removes the music and noisy parts, then makes segmentation of the speech signal into speaker turns and consequently tries to decode and transcribe single utterances. We employ our own recognizer recently operating with a 200K-word lexicon and with a bigram language model. The overall recognition rate achieved on all the test data was 71.53%, that obtained on the read parts was 82.72%. The most serious recognition errors occur mainly in the segments that contain background music or extremely loud noise.</description><subject>Acoustic Model</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automatic Speech Recognition</subject><subject>Bayesian Information Criterion</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Speech Recognition</subject><subject>Speech Signal</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540230496</isbn><isbn>3540230491</isbn><isbn>9783540301202</isbn><isbn>3540301208</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kE1PwzAMhsOXxDT2DzjkwjGQ2G3THsfE-FAFl3GOkjQZha6tmk5o_HqyDeGLrdePLOsh5FrwW8G5vCtkzpClCWfIBXAGKhUnZBZjjOEhg1MyEZkQDDEpzv53gDwpsnMyiRSwQiZ4SWYhfPJYkMo0xQl5WW6bZkfn27Hb6NFVdN73Q6ftBx07eh-nyuow0lf3Hehq0G2wQ92PddfSuqWLHxfBUrfrrV67K3LhdRPc7K9PyfvyYbV4YuXb4_NiXrIeIB-ZsUZAZaQDnXnjtUOLkCOXecWlkKlEbqwDb1AYD17mwmlw0uSZ405mGqfk5ni318HqxsevbB1UP9QbPexUFFEkWZFGDo5ciKt27QZluu4rKMHVXqyKlhSq6EkdJKq9WPwF6vxmUA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Nouza, Jan</creator><creator>Žďánský, Jindřich</creator><creator>David, Petr</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Fully Automated Approach to Broadcast News Transcription in Czech Language</title><author>Nouza, Jan ; Žďánský, Jindřich ; David, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-bcb12db7e2a6fbfae3c3283078d07175730bce2fb31bf2f781ea2e7b86e0e76a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustic Model</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automatic Speech Recognition</topic><topic>Bayesian Information Criterion</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Speech Recognition</topic><topic>Speech Signal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nouza, Jan</creatorcontrib><creatorcontrib>Žďánský, Jindřich</creatorcontrib><creatorcontrib>David, Petr</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nouza, Jan</au><au>Žďánský, Jindřich</au><au>David, Petr</au><au>Pala, Karel</au><au>Sojka, Petr</au><au>Kopeček, Ivan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fully Automated Approach to Broadcast News Transcription in Czech Language</atitle><btitle>Lecture notes in computer science</btitle><date>2004</date><risdate>2004</risdate><spage>401</spage><epage>408</epage><pages>401-408</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540230496</isbn><isbn>3540230491</isbn><eisbn>9783540301202</eisbn><eisbn>3540301208</eisbn><abstract>In the paper we propose a complete scheme for automatic transcription of Czech TV news. The scheme first removes the music and noisy parts, then makes segmentation of the speech signal into speaker turns and consequently tries to decode and transcribe single utterances. We employ our own recognizer recently operating with a 200K-word lexicon and with a bigram language model. The overall recognition rate achieved on all the test data was 71.53%, that obtained on the read parts was 82.72%. The most serious recognition errors occur mainly in the segments that contain background music or extremely loud noise.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30120-2_51</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.401-408
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16194695
source Springer Books
subjects Acoustic Model
Applied sciences
Artificial intelligence
Automatic Speech Recognition
Bayesian Information Criterion
Computer science
control theory
systems
Exact sciences and technology
Speech and sound recognition and synthesis. Linguistics
Speech Recognition
Speech Signal
title Fully Automated Approach to Broadcast News Transcription in Czech Language
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fully%20Automated%20Approach%20to%20Broadcast%20News%20Transcription%20in%20Czech%20Language&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Nouza,%20Jan&rft.date=2004&rft.spage=401&rft.epage=408&rft.pages=401-408&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540230496&rft.isbn_list=3540230491&rft_id=info:doi/10.1007/978-3-540-30120-2_51&rft_dat=%3Cpascalfrancis_sprin%3E16194695%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540301202&rft.eisbn_list=3540301208&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true