Document Classification Through Interactive Supervision of Document and Term Labels
Effective incorporation of human expertise, while exerting a low cognitive load, is a critical aspect of real-life text classification applications that is not adequately addressed by batch-supervised high-accuracy learners. Standard text classifiers are supervised in only one way: assigning labels...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | |
container_start_page | 185 |
container_title | |
container_volume | |
creator | Godbole, Shantanu Harpale, Abhay Sarawagi, Sunita Chakrabarti, Soumen |
description | Effective incorporation of human expertise, while exerting a low cognitive load, is a critical aspect of real-life text classification applications that is not adequately addressed by batch-supervised high-accuracy learners. Standard text classifiers are supervised in only one way: assigning labels to whole documents. They are thus deprived of the enormous wisdom that humans carry about the significance of words and phrases in context. We present HIClass, an interactive and exploratory labeling package that actively collects user opinion on feature representations and choices, as well as whole-document labels, while minimizing redundancy in the input sought. Preliminary experience suggests that, starting with essentially an unlabeled corpus, very little cognitive labor suffices to set up a labeled collection on which standard classifiers perform well. |
doi_str_mv | 10.1007/978-3-540-30116-5_19 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16177321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16177321</sourcerecordid><originalsourceid>FETCH-LOGICAL-p274t-5e4934d13bdc4863be93326459e21effdd1d781742d2c41d165490315b3fb953</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhM2fRFX6Bhxy4Wjwep04PqJCoVIlDs3dcmKnDaRJZKeVeHvcFnUvK83MrjQfIY_AnoEx-aJkTpGmglFkABlNNagrMosyRvGkpddkAhkARRTq5uJxBJazWzKJKU6VFHhPZiF8sziQS8X4hKzf-mq_c92YzFsTQlM3lRmbvkuKre_3m22y7EbnTTU2B5es94PzhyYc_b5OLqems0nh_C5ZmdK14YHc1aYNbva_p6RYvBfzT7r6-ljOX1d04FKMNHVCobCApa1EnmHpFCLPRKocB1fX1oKVOUjBLa8E2NhTKIaQlliXKsUpeTq_HUyoTFt701VN0INvdsb_6ghESuQQc_ycC9HqNs7rsu9_ggamj4B1pKVRR176BFMfAeMfoRxobg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Document Classification Through Interactive Supervision of Document and Term Labels</title><source>Springer Books</source><creator>Godbole, Shantanu ; Harpale, Abhay ; Sarawagi, Sunita ; Chakrabarti, Soumen</creator><contributor>Boulicaut, Jean-François ; Giannotti, Fosca ; Esposito, Floriana ; Pedreschi, Dino</contributor><creatorcontrib>Godbole, Shantanu ; Harpale, Abhay ; Sarawagi, Sunita ; Chakrabarti, Soumen ; Boulicaut, Jean-François ; Giannotti, Fosca ; Esposito, Floriana ; Pedreschi, Dino</creatorcontrib><description>Effective incorporation of human expertise, while exerting a low cognitive load, is a critical aspect of real-life text classification applications that is not adequately addressed by batch-supervised high-accuracy learners. Standard text classifiers are supervised in only one way: assigning labels to whole documents. They are thus deprived of the enormous wisdom that humans carry about the significance of words and phrases in context. We present HIClass, an interactive and exploratory labeling package that actively collects user opinion on feature representations and choices, as well as whole-document labels, while minimizing redundancy in the input sought. Preliminary experience suggests that, starting with essentially an unlabeled corpus, very little cognitive labor suffices to set up a labeled collection on which standard classifiers perform well.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540231080</identifier><identifier>ISBN: 3540231080</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540301165</identifier><identifier>EISBN: 354030116X</identifier><identifier>DOI: 10.1007/978-3-540-30116-5_19</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Learning ; Applied sciences ; Cognitive Load ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Label Document ; Linear Additive Model ; Memory organisation. Data processing ; Software ; Support Vector Machine</subject><ispartof>Knowledge Discovery in Databases: PKDD 2004, 2004, p.185-196</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30116-5_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30116-5_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16177321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Boulicaut, Jean-François</contributor><contributor>Giannotti, Fosca</contributor><contributor>Esposito, Floriana</contributor><contributor>Pedreschi, Dino</contributor><creatorcontrib>Godbole, Shantanu</creatorcontrib><creatorcontrib>Harpale, Abhay</creatorcontrib><creatorcontrib>Sarawagi, Sunita</creatorcontrib><creatorcontrib>Chakrabarti, Soumen</creatorcontrib><title>Document Classification Through Interactive Supervision of Document and Term Labels</title><title>Knowledge Discovery in Databases: PKDD 2004</title><description>Effective incorporation of human expertise, while exerting a low cognitive load, is a critical aspect of real-life text classification applications that is not adequately addressed by batch-supervised high-accuracy learners. Standard text classifiers are supervised in only one way: assigning labels to whole documents. They are thus deprived of the enormous wisdom that humans carry about the significance of words and phrases in context. We present HIClass, an interactive and exploratory labeling package that actively collects user opinion on feature representations and choices, as well as whole-document labels, while minimizing redundancy in the input sought. Preliminary experience suggests that, starting with essentially an unlabeled corpus, very little cognitive labor suffices to set up a labeled collection on which standard classifiers perform well.</description><subject>Active Learning</subject><subject>Applied sciences</subject><subject>Cognitive Load</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Label Document</subject><subject>Linear Additive Model</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540231080</isbn><isbn>3540231080</isbn><isbn>9783540301165</isbn><isbn>354030116X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kM1OwzAQhM2fRFX6Bhxy4Wjwep04PqJCoVIlDs3dcmKnDaRJZKeVeHvcFnUvK83MrjQfIY_AnoEx-aJkTpGmglFkABlNNagrMosyRvGkpddkAhkARRTq5uJxBJazWzKJKU6VFHhPZiF8sziQS8X4hKzf-mq_c92YzFsTQlM3lRmbvkuKre_3m22y7EbnTTU2B5es94PzhyYc_b5OLqems0nh_C5ZmdK14YHc1aYNbva_p6RYvBfzT7r6-ljOX1d04FKMNHVCobCApa1EnmHpFCLPRKocB1fX1oKVOUjBLa8E2NhTKIaQlliXKsUpeTq_HUyoTFt701VN0INvdsb_6ghESuQQc_ycC9HqNs7rsu9_ggamj4B1pKVRR176BFMfAeMfoRxobg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Godbole, Shantanu</creator><creator>Harpale, Abhay</creator><creator>Sarawagi, Sunita</creator><creator>Chakrabarti, Soumen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Document Classification Through Interactive Supervision of Document and Term Labels</title><author>Godbole, Shantanu ; Harpale, Abhay ; Sarawagi, Sunita ; Chakrabarti, Soumen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p274t-5e4934d13bdc4863be93326459e21effdd1d781742d2c41d165490315b3fb953</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Active Learning</topic><topic>Applied sciences</topic><topic>Cognitive Load</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Label Document</topic><topic>Linear Additive Model</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godbole, Shantanu</creatorcontrib><creatorcontrib>Harpale, Abhay</creatorcontrib><creatorcontrib>Sarawagi, Sunita</creatorcontrib><creatorcontrib>Chakrabarti, Soumen</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godbole, Shantanu</au><au>Harpale, Abhay</au><au>Sarawagi, Sunita</au><au>Chakrabarti, Soumen</au><au>Boulicaut, Jean-François</au><au>Giannotti, Fosca</au><au>Esposito, Floriana</au><au>Pedreschi, Dino</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Document Classification Through Interactive Supervision of Document and Term Labels</atitle><btitle>Knowledge Discovery in Databases: PKDD 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><spage>185</spage><epage>196</epage><pages>185-196</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540231080</isbn><isbn>3540231080</isbn><eisbn>9783540301165</eisbn><eisbn>354030116X</eisbn><abstract>Effective incorporation of human expertise, while exerting a low cognitive load, is a critical aspect of real-life text classification applications that is not adequately addressed by batch-supervised high-accuracy learners. Standard text classifiers are supervised in only one way: assigning labels to whole documents. They are thus deprived of the enormous wisdom that humans carry about the significance of words and phrases in context. We present HIClass, an interactive and exploratory labeling package that actively collects user opinion on feature representations and choices, as well as whole-document labels, while minimizing redundancy in the input sought. Preliminary experience suggests that, starting with essentially an unlabeled corpus, very little cognitive labor suffices to set up a labeled collection on which standard classifiers perform well.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30116-5_19</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Knowledge Discovery in Databases: PKDD 2004, 2004, p.185-196 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16177321 |
source | Springer Books |
subjects | Active Learning Applied sciences Cognitive Load Computer science control theory systems Data processing. List processing. Character string processing Exact sciences and technology Label Document Linear Additive Model Memory organisation. Data processing Software Support Vector Machine |
title | Document Classification Through Interactive Supervision of Document and Term Labels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Document%20Classification%20Through%20Interactive%20Supervision%20of%20Document%20and%20Term%20Labels&rft.btitle=Knowledge%20Discovery%20in%20Databases:%20PKDD%202004&rft.au=Godbole,%20Shantanu&rft.date=2004&rft.spage=185&rft.epage=196&rft.pages=185-196&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540231080&rft.isbn_list=3540231080&rft_id=info:doi/10.1007/978-3-540-30116-5_19&rft_dat=%3Cpascalfrancis_sprin%3E16177321%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540301165&rft.eisbn_list=354030116X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |