Indicator-Based Selection in Multiobjective Search

This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zitzler, Eckart, Künzli, Simon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 842
container_issue
container_start_page 832
container_title
container_volume
creator Zitzler, Eckart
Künzli, Simon
description This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.
doi_str_mv 10.1007/978-3-540-30217-9_84
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16177151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16177151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-24978f99da7df88d25a435daec8a5128347deb887d8ea4933e71321beefa1bce3</originalsourceid><addsrcrecordid>eNotUMtOAzEMDC-JUvoHHHrhGEjihCRHqHhUKuIAnCNv4oUty261KUj8PVmKL7ZmxtZ4GDuT4kIKYS-9dRy40YKDUNJyH5zeYydQkD9A77OJvJKSA2h_wGZFP3IKhFfqkE1GFfdWwzGb5bwWpcqWN2bC1LJLTcRtP_AbzJTmz9RS3DZ9N2-6-eNXW8ZqPSLfVDgc4vspO6qxzTT771P2enf7snjgq6f75eJ6xSNos-VKFxu19wltqp1LyqAGk5CiQyOVA20TVc7Z5Ai1ByArQcmKqEZZRYIpO9_d3WCO2NYDdrHJYTM0nzj8hPKwtdLIolM7XS5U90ZDqPr-IwcpwpheKDYChJJH-AsrjOnBL0FHXMY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indicator-Based Selection in Multiobjective Search</title><source>Springer Books</source><creator>Zitzler, Eckart ; Künzli, Simon</creator><contributor>Smith, Jim ; Lozano, José A. ; Burke, Edmund K. ; Schwefel, Hans-Paul ; Rowe, Jonathan E. ; Yao, Xin ; Merelo-Guervós, Juan Julián ; Bullinaria, John A. ; Tiňo, Peter ; Kabán, Ata</contributor><creatorcontrib>Zitzler, Eckart ; Künzli, Simon ; Smith, Jim ; Lozano, José A. ; Burke, Edmund K. ; Schwefel, Hans-Paul ; Rowe, Jonathan E. ; Yao, Xin ; Merelo-Guervós, Juan Julián ; Bullinaria, John A. ; Tiňo, Peter ; Kabán, Ata</creatorcontrib><description>This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540230922</identifier><identifier>ISBN: 3540230920</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540302174</identifier><identifier>EISBN: 9783540302179</identifier><identifier>DOI: 10.1007/978-3-540-30217-9_84</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Decision Vector ; Exact sciences and technology ; Knapsack Problem ; Learning and adaptive systems ; Multiobjective Evolutionary Algorithm ; Optimization Goal ; Population Member ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2004, p.832-842</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-24978f99da7df88d25a435daec8a5128347deb887d8ea4933e71321beefa1bce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30217-9_84$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30217-9_84$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16177151$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Smith, Jim</contributor><contributor>Lozano, José A.</contributor><contributor>Burke, Edmund K.</contributor><contributor>Schwefel, Hans-Paul</contributor><contributor>Rowe, Jonathan E.</contributor><contributor>Yao, Xin</contributor><contributor>Merelo-Guervós, Juan Julián</contributor><contributor>Bullinaria, John A.</contributor><contributor>Tiňo, Peter</contributor><contributor>Kabán, Ata</contributor><creatorcontrib>Zitzler, Eckart</creatorcontrib><creatorcontrib>Künzli, Simon</creatorcontrib><title>Indicator-Based Selection in Multiobjective Search</title><title>Lecture notes in computer science</title><description>This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Decision Vector</subject><subject>Exact sciences and technology</subject><subject>Knapsack Problem</subject><subject>Learning and adaptive systems</subject><subject>Multiobjective Evolutionary Algorithm</subject><subject>Optimization Goal</subject><subject>Population Member</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540230922</isbn><isbn>3540230920</isbn><isbn>3540302174</isbn><isbn>9783540302179</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUMtOAzEMDC-JUvoHHHrhGEjihCRHqHhUKuIAnCNv4oUty261KUj8PVmKL7ZmxtZ4GDuT4kIKYS-9dRy40YKDUNJyH5zeYydQkD9A77OJvJKSA2h_wGZFP3IKhFfqkE1GFfdWwzGb5bwWpcqWN2bC1LJLTcRtP_AbzJTmz9RS3DZ9N2-6-eNXW8ZqPSLfVDgc4vspO6qxzTT771P2enf7snjgq6f75eJ6xSNos-VKFxu19wltqp1LyqAGk5CiQyOVA20TVc7Z5Ai1ByArQcmKqEZZRYIpO9_d3WCO2NYDdrHJYTM0nzj8hPKwtdLIolM7XS5U90ZDqPr-IwcpwpheKDYChJJH-AsrjOnBL0FHXMY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Zitzler, Eckart</creator><creator>Künzli, Simon</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Indicator-Based Selection in Multiobjective Search</title><author>Zitzler, Eckart ; Künzli, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-24978f99da7df88d25a435daec8a5128347deb887d8ea4933e71321beefa1bce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Decision Vector</topic><topic>Exact sciences and technology</topic><topic>Knapsack Problem</topic><topic>Learning and adaptive systems</topic><topic>Multiobjective Evolutionary Algorithm</topic><topic>Optimization Goal</topic><topic>Population Member</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zitzler, Eckart</creatorcontrib><creatorcontrib>Künzli, Simon</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zitzler, Eckart</au><au>Künzli, Simon</au><au>Smith, Jim</au><au>Lozano, José A.</au><au>Burke, Edmund K.</au><au>Schwefel, Hans-Paul</au><au>Rowe, Jonathan E.</au><au>Yao, Xin</au><au>Merelo-Guervós, Juan Julián</au><au>Bullinaria, John A.</au><au>Tiňo, Peter</au><au>Kabán, Ata</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indicator-Based Selection in Multiobjective Search</atitle><btitle>Lecture notes in computer science</btitle><date>2004</date><risdate>2004</risdate><spage>832</spage><epage>842</epage><pages>832-842</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540230922</isbn><isbn>3540230920</isbn><eisbn>3540302174</eisbn><eisbn>9783540302179</eisbn><abstract>This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30217-9_84</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.832-842
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16177151
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Decision Vector
Exact sciences and technology
Knapsack Problem
Learning and adaptive systems
Multiobjective Evolutionary Algorithm
Optimization Goal
Population Member
Theoretical computing
title Indicator-Based Selection in Multiobjective Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indicator-Based%20Selection%20in%20Multiobjective%20Search&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Zitzler,%20Eckart&rft.date=2004&rft.spage=832&rft.epage=842&rft.pages=832-842&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540230922&rft.isbn_list=3540230920&rft_id=info:doi/10.1007/978-3-540-30217-9_84&rft_dat=%3Cpascalfrancis_sprin%3E16177151%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540302174&rft.eisbn_list=9783540302179&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true