Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search

The goal of our work is object categorization in real-world scenes. That is, given a novel image we want to recognize and localize unseen-before objects based on their similarity to a learned object category. For use in a real-world system, it is important that this includes the ability to recognize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leibe, Bastian, Schiele, Bernt
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue
container_start_page 145
container_title
container_volume
creator Leibe, Bastian
Schiele, Bernt
description The goal of our work is object categorization in real-world scenes. That is, given a novel image we want to recognize and localize unseen-before objects based on their similarity to a learned object category. For use in a real-world system, it is important that this includes the ability to recognize objects at multiple scales. In this paper, we present an approach to multi-scale object categorization using scale-invariant interest points and a scale-adaptive Mean-Shift search. The approach builds on the method from [12], which has been demonstrated to achieve excellent results for the single-scale case, and extends it to multiple scales. We present an experimental comparison of the influence of different interest point operators and quantitatively show the method’s robustness to large scale changes.
doi_str_mv 10.1007/978-3-540-28649-3_18
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16177111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16177111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-69056e05c29d4be341323b53d5449fbf8f7b4a44c8e983f3fa087b1730ea5f7d3</originalsourceid><addsrcrecordid>eNpFkE1PAjEQhutXIkH-gYe9eKy2ne62PRKiSIJyQM7N7G4LRdwl2w2J_noLmDiXSZ73zWTyEHLP2SNnTD0ZpSnQXDIqdCENBcv1BRklDAmeGFySAS84pwDSXP1nwshcXJMBAyaoURJuySjGLUsjuNagB-R9WeHO0VlzwC5g02eLcuuqPptg79ZtF36wD22TrWJo1hlm5_a4xn0fDi57c9jQ5Sb4Pls67KrNHbnxuItu9LeHZPXy_DF5pfPFdDYZz2kllOlpYVheOJZXwtSydCA5CChzqHMpjS-99qqUKGWlndHgwSPTquQKmMPcqxqG5OF8d48xveQ7bKoQ7b4LX9h92yRDKc556olzL6aoWbvOlm37GS1n9ijXJlMWbHJlTyLtUS78AgvUZos</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search</title><source>Springer Books</source><creator>Leibe, Bastian ; Schiele, Bernt</creator><contributor>Bülthoff, Heinrich H. ; Rasmussen, Carl Edward ; Schölkopf, Bernhard ; Giese, Martin A.</contributor><creatorcontrib>Leibe, Bastian ; Schiele, Bernt ; Bülthoff, Heinrich H. ; Rasmussen, Carl Edward ; Schölkopf, Bernhard ; Giese, Martin A.</creatorcontrib><description>The goal of our work is object categorization in real-world scenes. That is, given a novel image we want to recognize and localize unseen-before objects based on their similarity to a learned object category. For use in a real-world system, it is important that this includes the ability to recognize objects at multiple scales. In this paper, we present an approach to multi-scale object categorization using scale-invariant interest points and a scale-adaptive Mean-Shift search. The approach builds on the method from [12], which has been demonstrated to achieve excellent results for the single-scale case, and extends it to multiple scales. We present an experimental comparison of the influence of different interest point operators and quantitatively show the method’s robustness to large scale changes.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540229452</identifier><identifier>ISBN: 3540229450</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540286493</identifier><identifier>EISBN: 3540286497</identifier><identifier>DOI: 10.1007/978-3-540-28649-3_18</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Equal Error Rate ; Exact sciences and technology ; Interest Point ; Interest Point Detector ; Learning and adaptive systems ; Object Categorization ; Object Detection</subject><ispartof>Lecture notes in computer science, 2004, p.145-153</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-69056e05c29d4be341323b53d5449fbf8f7b4a44c8e983f3fa087b1730ea5f7d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-28649-3_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-28649-3_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16177111$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bülthoff, Heinrich H.</contributor><contributor>Rasmussen, Carl Edward</contributor><contributor>Schölkopf, Bernhard</contributor><contributor>Giese, Martin A.</contributor><creatorcontrib>Leibe, Bastian</creatorcontrib><creatorcontrib>Schiele, Bernt</creatorcontrib><title>Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search</title><title>Lecture notes in computer science</title><description>The goal of our work is object categorization in real-world scenes. That is, given a novel image we want to recognize and localize unseen-before objects based on their similarity to a learned object category. For use in a real-world system, it is important that this includes the ability to recognize objects at multiple scales. In this paper, we present an approach to multi-scale object categorization using scale-invariant interest points and a scale-adaptive Mean-Shift search. The approach builds on the method from [12], which has been demonstrated to achieve excellent results for the single-scale case, and extends it to multiple scales. We present an experimental comparison of the influence of different interest point operators and quantitatively show the method’s robustness to large scale changes.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Equal Error Rate</subject><subject>Exact sciences and technology</subject><subject>Interest Point</subject><subject>Interest Point Detector</subject><subject>Learning and adaptive systems</subject><subject>Object Categorization</subject><subject>Object Detection</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540229452</isbn><isbn>3540229450</isbn><isbn>9783540286493</isbn><isbn>3540286497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkE1PAjEQhutXIkH-gYe9eKy2ne62PRKiSIJyQM7N7G4LRdwl2w2J_noLmDiXSZ73zWTyEHLP2SNnTD0ZpSnQXDIqdCENBcv1BRklDAmeGFySAS84pwDSXP1nwshcXJMBAyaoURJuySjGLUsjuNagB-R9WeHO0VlzwC5g02eLcuuqPptg79ZtF36wD22TrWJo1hlm5_a4xn0fDi57c9jQ5Sb4Pls67KrNHbnxuItu9LeHZPXy_DF5pfPFdDYZz2kllOlpYVheOJZXwtSydCA5CChzqHMpjS-99qqUKGWlndHgwSPTquQKmMPcqxqG5OF8d48xveQ7bKoQ7b4LX9h92yRDKc556olzL6aoWbvOlm37GS1n9ijXJlMWbHJlTyLtUS78AgvUZos</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Leibe, Bastian</creator><creator>Schiele, Bernt</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search</title><author>Leibe, Bastian ; Schiele, Bernt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-69056e05c29d4be341323b53d5449fbf8f7b4a44c8e983f3fa087b1730ea5f7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Equal Error Rate</topic><topic>Exact sciences and technology</topic><topic>Interest Point</topic><topic>Interest Point Detector</topic><topic>Learning and adaptive systems</topic><topic>Object Categorization</topic><topic>Object Detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leibe, Bastian</creatorcontrib><creatorcontrib>Schiele, Bernt</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibe, Bastian</au><au>Schiele, Bernt</au><au>Bülthoff, Heinrich H.</au><au>Rasmussen, Carl Edward</au><au>Schölkopf, Bernhard</au><au>Giese, Martin A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search</atitle><btitle>Lecture notes in computer science</btitle><date>2004</date><risdate>2004</risdate><spage>145</spage><epage>153</epage><pages>145-153</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540229452</isbn><isbn>3540229450</isbn><eisbn>9783540286493</eisbn><eisbn>3540286497</eisbn><abstract>The goal of our work is object categorization in real-world scenes. That is, given a novel image we want to recognize and localize unseen-before objects based on their similarity to a learned object category. For use in a real-world system, it is important that this includes the ability to recognize objects at multiple scales. In this paper, we present an approach to multi-scale object categorization using scale-invariant interest points and a scale-adaptive Mean-Shift search. The approach builds on the method from [12], which has been demonstrated to achieve excellent results for the single-scale case, and extends it to multiple scales. We present an experimental comparison of the influence of different interest point operators and quantitatively show the method’s robustness to large scale changes.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-28649-3_18</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.145-153
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16177111
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Equal Error Rate
Exact sciences and technology
Interest Point
Interest Point Detector
Learning and adaptive systems
Object Categorization
Object Detection
title Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scale-Invariant%20Object%20Categorization%20Using%20a%20Scale-Adaptive%20Mean-Shift%20Search&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Leibe,%20Bastian&rft.date=2004&rft.spage=145&rft.epage=153&rft.pages=145-153&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540229452&rft.isbn_list=3540229450&rft_id=info:doi/10.1007/978-3-540-28649-3_18&rft_dat=%3Cpascalfrancis_sprin%3E16177111%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540286493&rft.eisbn_list=3540286497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true