Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening

We treat the problem of Blind Deconvolution of Single Input – Single Output (SISO) systems with real or complex binary sources. We explicate the basic mathematical idea by focusing on the noiseless case. Our approach leads to a recursive channel shortening algorithm based on simple data gouping. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diamantaras, Konstantinos I., Papadimitriou, Theophilos
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue
container_start_page 548
container_title
container_volume
creator Diamantaras, Konstantinos I.
Papadimitriou, Theophilos
description We treat the problem of Blind Deconvolution of Single Input – Single Output (SISO) systems with real or complex binary sources. We explicate the basic mathematical idea by focusing on the noiseless case. Our approach leads to a recursive channel shortening algorithm based on simple data gouping. The channel shortening process eventually results in an instantaneous binary system with trivial solution. The method is both deterministic and very fast. It does not involve any iterative optimization or stochastic approximation procedure. It does however, require sufficiently large datasets in order to meet the source richness condition.
doi_str_mv 10.1007/978-3-540-30110-3_70
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16176798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16176798</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-a1647e312c0dc1170d26b98ff7de749f9b5f861b5d534f55cf981e4fac8eed03</originalsourceid><addsrcrecordid>eNotkE1vAiEQhulXUmv9Bz1w6ZEWFnaBY7VfJiYmXY9NCLKgtCuYZbXx3xdt5zCTvPNkMnkAuCP4gWDMHyUXiKKSYUQxIbkrjs_ADc3JKcDnYEAqQhClTF6AUeaPu4LismKXYJCpAknO6DUYpfSFcxEuiGAD8DlufWjgszUx7GO7630MMDpYT-s5rA-pt5sEf3y_hmMfdHeAddx1xsKxTraBmf2wZtclv7dwstYh2BbW69j1NviwugVXTrfJjv7nECxeXxaTdzSbv00nTzO0LQrRI00qxi0lhcGNIYTjpqiWUjjHG8uZdHJZOlGRZdmUlLmyNE4KYpnTRljbYDoE939ntzoZ3bpOB-OT2nZ-kz9W2QyvuBSZK_64lFdhZTu1jPE7KYLVUbPK2hRVWZw6WVVHzfQXgUhrbQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening</title><source>Springer Books</source><creator>Diamantaras, Konstantinos I. ; Papadimitriou, Theophilos</creator><contributor>Puntonet, Carlos G. ; Prieto, Alberto</contributor><creatorcontrib>Diamantaras, Konstantinos I. ; Papadimitriou, Theophilos ; Puntonet, Carlos G. ; Prieto, Alberto</creatorcontrib><description>We treat the problem of Blind Deconvolution of Single Input – Single Output (SISO) systems with real or complex binary sources. We explicate the basic mathematical idea by focusing on the noiseless case. Our approach leads to a recursive channel shortening algorithm based on simple data gouping. The channel shortening process eventually results in an instantaneous binary system with trivial solution. The method is both deterministic and very fast. It does not involve any iterative optimization or stochastic approximation procedure. It does however, require sufficiently large datasets in order to meet the source richness condition.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540230564</identifier><identifier>ISBN: 3540230564</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540301100</identifier><identifier>EISBN: 9783540301103</identifier><identifier>DOI: 10.1007/978-3-540-30110-3_70</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Blind Deconvolution ; Blind Separation ; Blind Source Separation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Noiseless Case ; Signal and communications theory ; Signal, noise ; Source Vector ; Telecommunications and information theory</subject><ispartof>Independent Component Analysis and Blind Signal Separation, 2004, p.548-553</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30110-3_70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30110-3_70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16176798$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Puntonet, Carlos G.</contributor><contributor>Prieto, Alberto</contributor><creatorcontrib>Diamantaras, Konstantinos I.</creatorcontrib><creatorcontrib>Papadimitriou, Theophilos</creatorcontrib><title>Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening</title><title>Independent Component Analysis and Blind Signal Separation</title><description>We treat the problem of Blind Deconvolution of Single Input – Single Output (SISO) systems with real or complex binary sources. We explicate the basic mathematical idea by focusing on the noiseless case. Our approach leads to a recursive channel shortening algorithm based on simple data gouping. The channel shortening process eventually results in an instantaneous binary system with trivial solution. The method is both deterministic and very fast. It does not involve any iterative optimization or stochastic approximation procedure. It does however, require sufficiently large datasets in order to meet the source richness condition.</description><subject>Applied sciences</subject><subject>Blind Deconvolution</subject><subject>Blind Separation</subject><subject>Blind Source Separation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Noiseless Case</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Source Vector</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540230564</isbn><isbn>3540230564</isbn><isbn>3540301100</isbn><isbn>9783540301103</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1vAiEQhulXUmv9Bz1w6ZEWFnaBY7VfJiYmXY9NCLKgtCuYZbXx3xdt5zCTvPNkMnkAuCP4gWDMHyUXiKKSYUQxIbkrjs_ADc3JKcDnYEAqQhClTF6AUeaPu4LismKXYJCpAknO6DUYpfSFcxEuiGAD8DlufWjgszUx7GO7630MMDpYT-s5rA-pt5sEf3y_hmMfdHeAddx1xsKxTraBmf2wZtclv7dwstYh2BbW69j1NviwugVXTrfJjv7nECxeXxaTdzSbv00nTzO0LQrRI00qxi0lhcGNIYTjpqiWUjjHG8uZdHJZOlGRZdmUlLmyNE4KYpnTRljbYDoE939ntzoZ3bpOB-OT2nZ-kz9W2QyvuBSZK_64lFdhZTu1jPE7KYLVUbPK2hRVWZw6WVVHzfQXgUhrbQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Diamantaras, Konstantinos I.</creator><creator>Papadimitriou, Theophilos</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening</title><author>Diamantaras, Konstantinos I. ; Papadimitriou, Theophilos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-a1647e312c0dc1170d26b98ff7de749f9b5f861b5d534f55cf981e4fac8eed03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Blind Deconvolution</topic><topic>Blind Separation</topic><topic>Blind Source Separation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Noiseless Case</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Source Vector</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamantaras, Konstantinos I.</creatorcontrib><creatorcontrib>Papadimitriou, Theophilos</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamantaras, Konstantinos I.</au><au>Papadimitriou, Theophilos</au><au>Puntonet, Carlos G.</au><au>Prieto, Alberto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening</atitle><btitle>Independent Component Analysis and Blind Signal Separation</btitle><date>2004</date><risdate>2004</risdate><spage>548</spage><epage>553</epage><pages>548-553</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540230564</isbn><isbn>3540230564</isbn><eisbn>3540301100</eisbn><eisbn>9783540301103</eisbn><abstract>We treat the problem of Blind Deconvolution of Single Input – Single Output (SISO) systems with real or complex binary sources. We explicate the basic mathematical idea by focusing on the noiseless case. Our approach leads to a recursive channel shortening algorithm based on simple data gouping. The channel shortening process eventually results in an instantaneous binary system with trivial solution. The method is both deterministic and very fast. It does not involve any iterative optimization or stochastic approximation procedure. It does however, require sufficiently large datasets in order to meet the source richness condition.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30110-3_70</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Independent Component Analysis and Blind Signal Separation, 2004, p.548-553
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16176798
source Springer Books
subjects Applied sciences
Blind Deconvolution
Blind Separation
Blind Source Separation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Noiseless Case
Signal and communications theory
Signal, noise
Source Vector
Telecommunications and information theory
title Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Blind%20Deconvolution%20of%20SISO%20Systems%20with%20Binary%20Source%20Based%20on%20Recursive%20Channel%20Shortening&rft.btitle=Independent%20Component%20Analysis%20and%20Blind%20Signal%20Separation&rft.au=Diamantaras,%20Konstantinos%20I.&rft.date=2004&rft.spage=548&rft.epage=553&rft.pages=548-553&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540230564&rft.isbn_list=3540230564&rft_id=info:doi/10.1007/978-3-540-30110-3_70&rft_dat=%3Cpascalfrancis_sprin%3E16176798%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540301100&rft.eisbn_list=9783540301103&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true