A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning
Data cleaning deals with the detection and removal of errors and inconsistencies in data, gathered from distributed sources. This process is essential for drawing correct conclusions from data in decision support systems. Eliminating fuzzy duplicate records is a fundamental part of the data cleaning...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | |
container_start_page | 161 |
container_title | |
container_volume | |
creator | Shahri, Hamid Haidarian Barforush, Ahmad Abdollahzadeh |
description | Data cleaning deals with the detection and removal of errors and inconsistencies in data, gathered from distributed sources. This process is essential for drawing correct conclusions from data in decision support systems. Eliminating fuzzy duplicate records is a fundamental part of the data cleaning process. The vagueness and uncertainty involved in detecting fuzzy duplicates make it a niche, for applying fuzzy reasoning. Although uncertainty alg ebras like fuzzy logic are known, their applicability to the problem of duplicate elimination has remained unexplored and unclear, until today. In this paper, a novel and flexible fuzzy expert system for detection and elimination of fuzzy duplicates in the process of data cleaning is devised, which circumvents the repetitive and inconvenient task of hard-coding. Some of the crucial advantages of this approach are its flexibility, ease of use, extendibility, fast development time and efficient run time, when used in various information systems. |
doi_str_mv | 10.1007/978-3-540-30075-5_16 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16164049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16164049</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-973649751d9146a0ae33b090470d34f3f703345c7975688ba2148d04e6739a0d3</originalsourceid><addsrcrecordid>eNotkMtuwyAQRelLaprmD7pg0yXt4MFgllEebaVIWbRdI-zgiNaxLeNISb4-5DEbNPceITiEvHB44wDqXauMIUsFMIxrylLD5Q15wpicA31LBlxyzhCFviOjyJ-6JNEo4Z4MIpUwrQQ-klEIfxCHYwpZNiDLMZ1XbufzytH59nDY09mudV1Pv_ehdxtaNt01n27byhe2d3RW-Y2vbe-bmvqaTm1v6aRytvb1-pk8lLYKbnQ9h-R3PvuZfLLF8uNrMl6wNkmyPj4GpdAq5SvNhbRgHWIOGoSCFYoSSwXxL2mhIiOzLLcJF9kKhJMKtY3MkLxe7m1tKGxVdrYufDBt5ze220c_XAoQOnLJhQuxqteuM3nT_AfDwZzUmqjKoImyzNmkOanFI8B3ZL8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning</title><source>Springer Books</source><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shahri, Hamid Haidarian ; Barforush, Ahmad Abdollahzadeh</creator><contributor>Galindo, Fernando ; Takizawa, Makoto ; Traunmüller, Roland</contributor><creatorcontrib>Shahri, Hamid Haidarian ; Barforush, Ahmad Abdollahzadeh ; Galindo, Fernando ; Takizawa, Makoto ; Traunmüller, Roland</creatorcontrib><description>Data cleaning deals with the detection and removal of errors and inconsistencies in data, gathered from distributed sources. This process is essential for drawing correct conclusions from data in decision support systems. Eliminating fuzzy duplicate records is a fundamental part of the data cleaning process. The vagueness and uncertainty involved in detecting fuzzy duplicates make it a niche, for applying fuzzy reasoning. Although uncertainty alg ebras like fuzzy logic are known, their applicability to the problem of duplicate elimination has remained unexplored and unclear, until today. In this paper, a novel and flexible fuzzy expert system for detection and elimination of fuzzy duplicates in the process of data cleaning is devised, which circumvents the repetitive and inconvenient task of hard-coding. Some of the crucial advantages of this approach are its flexibility, ease of use, extendibility, fast development time and efficient run time, when used in various information systems.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540229360</identifier><identifier>ISBN: 3540229361</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540300759</identifier><identifier>EISBN: 9783540300755</identifier><identifier>DOI: 10.1007/978-3-540-30075-5_16</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Fuzzy Rule ; Fuzzy Subset ; Inference Process ; Information systems. Data bases ; Linguistic Term ; Membership Function ; Memory organisation. Data processing ; Software</subject><ispartof>Database and Expert Systems Applications, 2004, p.161-170</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30075-5_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30075-5_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16164049$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Galindo, Fernando</contributor><contributor>Takizawa, Makoto</contributor><contributor>Traunmüller, Roland</contributor><creatorcontrib>Shahri, Hamid Haidarian</creatorcontrib><creatorcontrib>Barforush, Ahmad Abdollahzadeh</creatorcontrib><title>A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning</title><title>Database and Expert Systems Applications</title><description>Data cleaning deals with the detection and removal of errors and inconsistencies in data, gathered from distributed sources. This process is essential for drawing correct conclusions from data in decision support systems. Eliminating fuzzy duplicate records is a fundamental part of the data cleaning process. The vagueness and uncertainty involved in detecting fuzzy duplicates make it a niche, for applying fuzzy reasoning. Although uncertainty alg ebras like fuzzy logic are known, their applicability to the problem of duplicate elimination has remained unexplored and unclear, until today. In this paper, a novel and flexible fuzzy expert system for detection and elimination of fuzzy duplicates in the process of data cleaning is devised, which circumvents the repetitive and inconvenient task of hard-coding. Some of the crucial advantages of this approach are its flexibility, ease of use, extendibility, fast development time and efficient run time, when used in various information systems.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Rule</subject><subject>Fuzzy Subset</subject><subject>Inference Process</subject><subject>Information systems. Data bases</subject><subject>Linguistic Term</subject><subject>Membership Function</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540229360</isbn><isbn>3540229361</isbn><isbn>3540300759</isbn><isbn>9783540300755</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtuwyAQRelLaprmD7pg0yXt4MFgllEebaVIWbRdI-zgiNaxLeNISb4-5DEbNPceITiEvHB44wDqXauMIUsFMIxrylLD5Q15wpicA31LBlxyzhCFviOjyJ-6JNEo4Z4MIpUwrQQ-klEIfxCHYwpZNiDLMZ1XbufzytH59nDY09mudV1Pv_ehdxtaNt01n27byhe2d3RW-Y2vbe-bmvqaTm1v6aRytvb1-pk8lLYKbnQ9h-R3PvuZfLLF8uNrMl6wNkmyPj4GpdAq5SvNhbRgHWIOGoSCFYoSSwXxL2mhIiOzLLcJF9kKhJMKtY3MkLxe7m1tKGxVdrYufDBt5ze220c_XAoQOnLJhQuxqteuM3nT_AfDwZzUmqjKoImyzNmkOanFI8B3ZL8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Shahri, Hamid Haidarian</creator><creator>Barforush, Ahmad Abdollahzadeh</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning</title><author>Shahri, Hamid Haidarian ; Barforush, Ahmad Abdollahzadeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-973649751d9146a0ae33b090470d34f3f703345c7975688ba2148d04e6739a0d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Rule</topic><topic>Fuzzy Subset</topic><topic>Inference Process</topic><topic>Information systems. Data bases</topic><topic>Linguistic Term</topic><topic>Membership Function</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahri, Hamid Haidarian</creatorcontrib><creatorcontrib>Barforush, Ahmad Abdollahzadeh</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahri, Hamid Haidarian</au><au>Barforush, Ahmad Abdollahzadeh</au><au>Galindo, Fernando</au><au>Takizawa, Makoto</au><au>Traunmüller, Roland</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning</atitle><btitle>Database and Expert Systems Applications</btitle><date>2004</date><risdate>2004</risdate><spage>161</spage><epage>170</epage><pages>161-170</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540229360</isbn><isbn>3540229361</isbn><eisbn>3540300759</eisbn><eisbn>9783540300755</eisbn><abstract>Data cleaning deals with the detection and removal of errors and inconsistencies in data, gathered from distributed sources. This process is essential for drawing correct conclusions from data in decision support systems. Eliminating fuzzy duplicate records is a fundamental part of the data cleaning process. The vagueness and uncertainty involved in detecting fuzzy duplicates make it a niche, for applying fuzzy reasoning. Although uncertainty alg ebras like fuzzy logic are known, their applicability to the problem of duplicate elimination has remained unexplored and unclear, until today. In this paper, a novel and flexible fuzzy expert system for detection and elimination of fuzzy duplicates in the process of data cleaning is devised, which circumvents the repetitive and inconvenient task of hard-coding. Some of the crucial advantages of this approach are its flexibility, ease of use, extendibility, fast development time and efficient run time, when used in various information systems.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30075-5_16</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Database and Expert Systems Applications, 2004, p.161-170 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16164049 |
source | Springer Books; IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Fuzzy Rule Fuzzy Subset Inference Process Information systems. Data bases Linguistic Term Membership Function Memory organisation. Data processing Software |
title | A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Flexible%20Fuzzy%20Expert%20System%20for%20Fuzzy%20Duplicate%20Elimination%20in%20Data%20Cleaning&rft.btitle=Database%20and%20Expert%20Systems%20Applications&rft.au=Shahri,%20Hamid%20Haidarian&rft.date=2004&rft.spage=161&rft.epage=170&rft.pages=161-170&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540229360&rft.isbn_list=3540229361&rft_id=info:doi/10.1007/978-3-540-30075-5_16&rft_dat=%3Cpascalfrancis_sprin%3E16164049%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540300759&rft.eisbn_list=9783540300755&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |