Optimal Circuit Design Using Immune Algorithm

Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kalinli, Adem
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 42
container_title
container_volume
creator Kalinli, Adem
description Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.
doi_str_mv 10.1007/978-3-540-30220-9_4
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16144557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16144557</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-8f37b86dbd7ffe283b0902d9e0f12ce273eb533a30d39b87082ccfb735518c73</originalsourceid><addsrcrecordid>eNotkEtPwzAMgMNLYoz9Ai69cAw4cbskx2m8Jk3aZZyjJk1KoO2qpjvw70k3fLFsf7Lsj5AHBk8MQDwrISnSIgeKwDlQpfMLcoepcarzSzJjS8YoYq6uyCLh04wjKCGuyWyiqBI53pJFjN-QgsGSQTEjdNePoS2bbB0Gewxj9uJiqLvsM4auzjZte-xctmrqwxDGr_ae3PiyiW7xn-dk__a6X3_Q7e59s15tac-5GKn0KIxcVqYS3jsu0YACXikHnnHruEBnCsQSoUJlpADJrfVGYFEwaQXOyeN5bV9GWzZ-KDsbou6HdOnwq9OreV4UE8fOXEyjrnaDNofDT9QM9KRNJw8adTKhT5p00oZ_w4hZaA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Circuit Design Using Immune Algorithm</title><source>Springer Books</source><creator>Kalinli, Adem</creator><contributor>Timmis, Jon ; Bentley, Peter J. ; Nicosia, Giuseppe ; Cutello, Vincenzo</contributor><creatorcontrib>Kalinli, Adem ; Timmis, Jon ; Bentley, Peter J. ; Nicosia, Giuseppe ; Cutello, Vincenzo</creatorcontrib><description>Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540230977</identifier><identifier>ISBN: 3540230971</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540302204</identifier><identifier>EISBN: 9783540302209</identifier><identifier>DOI: 10.1007/978-3-540-30220-9_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Filter ; Applied sciences ; Artificial Immune System ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Immune Algorithm ; Immune Network ; Learning and adaptive systems ; Natural Immune System</subject><ispartof>Artificial Immune Systems, 2004, p.42-52</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30220-9_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30220-9_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16144557$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Timmis, Jon</contributor><contributor>Bentley, Peter J.</contributor><contributor>Nicosia, Giuseppe</contributor><contributor>Cutello, Vincenzo</contributor><creatorcontrib>Kalinli, Adem</creatorcontrib><title>Optimal Circuit Design Using Immune Algorithm</title><title>Artificial Immune Systems</title><description>Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.</description><subject>Active Filter</subject><subject>Applied sciences</subject><subject>Artificial Immune System</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Immune Algorithm</subject><subject>Immune Network</subject><subject>Learning and adaptive systems</subject><subject>Natural Immune System</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540230977</isbn><isbn>3540230971</isbn><isbn>3540302204</isbn><isbn>9783540302209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtPwzAMgMNLYoz9Ai69cAw4cbskx2m8Jk3aZZyjJk1KoO2qpjvw70k3fLFsf7Lsj5AHBk8MQDwrISnSIgeKwDlQpfMLcoepcarzSzJjS8YoYq6uyCLh04wjKCGuyWyiqBI53pJFjN-QgsGSQTEjdNePoS2bbB0Gewxj9uJiqLvsM4auzjZte-xctmrqwxDGr_ae3PiyiW7xn-dk__a6X3_Q7e59s15tac-5GKn0KIxcVqYS3jsu0YACXikHnnHruEBnCsQSoUJlpADJrfVGYFEwaQXOyeN5bV9GWzZ-KDsbou6HdOnwq9OreV4UE8fOXEyjrnaDNofDT9QM9KRNJw8adTKhT5p00oZ_w4hZaA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kalinli, Adem</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Optimal Circuit Design Using Immune Algorithm</title><author>Kalinli, Adem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-8f37b86dbd7ffe283b0902d9e0f12ce273eb533a30d39b87082ccfb735518c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Active Filter</topic><topic>Applied sciences</topic><topic>Artificial Immune System</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Immune Algorithm</topic><topic>Immune Network</topic><topic>Learning and adaptive systems</topic><topic>Natural Immune System</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalinli, Adem</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalinli, Adem</au><au>Timmis, Jon</au><au>Bentley, Peter J.</au><au>Nicosia, Giuseppe</au><au>Cutello, Vincenzo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Circuit Design Using Immune Algorithm</atitle><btitle>Artificial Immune Systems</btitle><date>2004</date><risdate>2004</risdate><spage>42</spage><epage>52</epage><pages>42-52</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540230977</isbn><isbn>3540230971</isbn><eisbn>3540302204</eisbn><eisbn>9783540302209</eisbn><abstract>Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30220-9_4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Immune Systems, 2004, p.42-52
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16144557
source Springer Books
subjects Active Filter
Applied sciences
Artificial Immune System
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Immune Algorithm
Immune Network
Learning and adaptive systems
Natural Immune System
title Optimal Circuit Design Using Immune Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Circuit%20Design%20Using%20Immune%20Algorithm&rft.btitle=Artificial%20Immune%20Systems&rft.au=Kalinli,%20Adem&rft.date=2004&rft.spage=42&rft.epage=52&rft.pages=42-52&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540230977&rft.isbn_list=3540230971&rft_id=info:doi/10.1007/978-3-540-30220-9_4&rft_dat=%3Cpascalfrancis_sprin%3E16144557%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540302204&rft.eisbn_list=9783540302209&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true