Optimal Circuit Design Using Immune Algorithm
Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | |
container_volume | |
creator | Kalinli, Adem |
description | Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters. |
doi_str_mv | 10.1007/978-3-540-30220-9_4 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16144557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16144557</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-8f37b86dbd7ffe283b0902d9e0f12ce273eb533a30d39b87082ccfb735518c73</originalsourceid><addsrcrecordid>eNotkEtPwzAMgMNLYoz9Ai69cAw4cbskx2m8Jk3aZZyjJk1KoO2qpjvw70k3fLFsf7Lsj5AHBk8MQDwrISnSIgeKwDlQpfMLcoepcarzSzJjS8YoYq6uyCLh04wjKCGuyWyiqBI53pJFjN-QgsGSQTEjdNePoS2bbB0Gewxj9uJiqLvsM4auzjZte-xctmrqwxDGr_ae3PiyiW7xn-dk__a6X3_Q7e59s15tac-5GKn0KIxcVqYS3jsu0YACXikHnnHruEBnCsQSoUJlpADJrfVGYFEwaQXOyeN5bV9GWzZ-KDsbou6HdOnwq9OreV4UE8fOXEyjrnaDNofDT9QM9KRNJw8adTKhT5p00oZ_w4hZaA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Circuit Design Using Immune Algorithm</title><source>Springer Books</source><creator>Kalinli, Adem</creator><contributor>Timmis, Jon ; Bentley, Peter J. ; Nicosia, Giuseppe ; Cutello, Vincenzo</contributor><creatorcontrib>Kalinli, Adem ; Timmis, Jon ; Bentley, Peter J. ; Nicosia, Giuseppe ; Cutello, Vincenzo</creatorcontrib><description>Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540230977</identifier><identifier>ISBN: 3540230971</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540302204</identifier><identifier>EISBN: 9783540302209</identifier><identifier>DOI: 10.1007/978-3-540-30220-9_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Filter ; Applied sciences ; Artificial Immune System ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Immune Algorithm ; Immune Network ; Learning and adaptive systems ; Natural Immune System</subject><ispartof>Artificial Immune Systems, 2004, p.42-52</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30220-9_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30220-9_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16144557$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Timmis, Jon</contributor><contributor>Bentley, Peter J.</contributor><contributor>Nicosia, Giuseppe</contributor><contributor>Cutello, Vincenzo</contributor><creatorcontrib>Kalinli, Adem</creatorcontrib><title>Optimal Circuit Design Using Immune Algorithm</title><title>Artificial Immune Systems</title><description>Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.</description><subject>Active Filter</subject><subject>Applied sciences</subject><subject>Artificial Immune System</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Immune Algorithm</subject><subject>Immune Network</subject><subject>Learning and adaptive systems</subject><subject>Natural Immune System</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540230977</isbn><isbn>3540230971</isbn><isbn>3540302204</isbn><isbn>9783540302209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtPwzAMgMNLYoz9Ai69cAw4cbskx2m8Jk3aZZyjJk1KoO2qpjvw70k3fLFsf7Lsj5AHBk8MQDwrISnSIgeKwDlQpfMLcoepcarzSzJjS8YoYq6uyCLh04wjKCGuyWyiqBI53pJFjN-QgsGSQTEjdNePoS2bbB0Gewxj9uJiqLvsM4auzjZte-xctmrqwxDGr_ae3PiyiW7xn-dk__a6X3_Q7e59s15tac-5GKn0KIxcVqYS3jsu0YACXikHnnHruEBnCsQSoUJlpADJrfVGYFEwaQXOyeN5bV9GWzZ-KDsbou6HdOnwq9OreV4UE8fOXEyjrnaDNofDT9QM9KRNJw8adTKhT5p00oZ_w4hZaA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kalinli, Adem</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Optimal Circuit Design Using Immune Algorithm</title><author>Kalinli, Adem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-8f37b86dbd7ffe283b0902d9e0f12ce273eb533a30d39b87082ccfb735518c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Active Filter</topic><topic>Applied sciences</topic><topic>Artificial Immune System</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Immune Algorithm</topic><topic>Immune Network</topic><topic>Learning and adaptive systems</topic><topic>Natural Immune System</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalinli, Adem</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalinli, Adem</au><au>Timmis, Jon</au><au>Bentley, Peter J.</au><au>Nicosia, Giuseppe</au><au>Cutello, Vincenzo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Circuit Design Using Immune Algorithm</atitle><btitle>Artificial Immune Systems</btitle><date>2004</date><risdate>2004</risdate><spage>42</spage><epage>52</epage><pages>42-52</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540230977</isbn><isbn>3540230971</isbn><eisbn>3540302204</eisbn><eisbn>9783540302209</eisbn><abstract>Over the last years, there has been a great increase in interest in studying biological systems to develop new approaches for solving difficult engineering problems. Artificial neural networks, evolutionary computation, ant colony system and artificial immune system are some of these approaches. In the literature, there are several models proposed for neural network and evolutionary computation to many different problems from different areas. However, the immune system has not attracted the same kind of interest from researchers as neural network or evolutionary computation. An artificial immune system implements a learning technique inspired by human immune system. In this work, a novel method based on artificial immune algorithm is described to component value selection for analog active filters.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30220-9_4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Immune Systems, 2004, p.42-52 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16144557 |
source | Springer Books |
subjects | Active Filter Applied sciences Artificial Immune System Artificial intelligence Computer science control theory systems Exact sciences and technology Immune Algorithm Immune Network Learning and adaptive systems Natural Immune System |
title | Optimal Circuit Design Using Immune Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Circuit%20Design%20Using%20Immune%20Algorithm&rft.btitle=Artificial%20Immune%20Systems&rft.au=Kalinli,%20Adem&rft.date=2004&rft.spage=42&rft.epage=52&rft.pages=42-52&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540230977&rft.isbn_list=3540230971&rft_id=info:doi/10.1007/978-3-540-30220-9_4&rft_dat=%3Cpascalfrancis_sprin%3E16144557%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540302204&rft.eisbn_list=9783540302209&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |