Constructive Induction for Classifying Time Series

We present a method of constructive induction aimed at learning tasks involving multivariate time series data. Using metafeatures, the scope of attribute-value learning is expanded to domains that contain instances that have some kind of recurring substructure, such as strokes in handwriting recogni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kadous, Mohammed Waleed, Sammut, Claude
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue
container_start_page 192
container_title
container_volume
creator Kadous, Mohammed Waleed
Sammut, Claude
description We present a method of constructive induction aimed at learning tasks involving multivariate time series data. Using metafeatures, the scope of attribute-value learning is expanded to domains that contain instances that have some kind of recurring substructure, such as strokes in handwriting recognition, or local maxima in time series data. These substructures are used to construct attributes. Metafeatures are applied to two real-world domains: sign language recognition and ECG classification. Using a very generic set of metafeatures we are able to generate classifiers that are either comprehensible or accurate, producing results that are comparable to hand-crafted preprocessing and comparable to human experts.
doi_str_mv 10.1007/978-3-540-30115-8_20
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16144316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16144316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1f6abef9948c69b179551391079c4345cba53a29f3fd2a67b4291623815167b83</originalsourceid><addsrcrecordid>eNotkE1PwzAMhsOXxBj7Bxx64RiI46Stj6jiY9IkDoxzlGbJFNjaqRlI-_ekG77Yfv3K0vswdgfiAYSoHqmqOXKtBEcBoHltpDhjN5iVowDnbAIlAEdUdMFm2T_eJILQdMkm2SU5VQqv2SylL5ELSAuSEyabvkv74cft468v5t1qnPquCP1QNBubUgyH2K2LZdz64sMP0adbdhXsJvnZf5-yz5fnZfPGF--v8-ZpwR1KvecQStv6QKRqV1ILFWkNSCAqcgqVdq3VaCUFDCtpy6pVkqCUWOc8eatxyu5Pf3c2ObsJg-1cTGY3xK0dDiYHVgqhzD558qV86tZ-MG3ffycDwoz0TKZh0GQe5gjLjPTwD76BWzg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Constructive Induction for Classifying Time Series</title><source>Springer Books</source><creator>Kadous, Mohammed Waleed ; Sammut, Claude</creator><contributor>Boulicaut, Jean-François ; Giannotti, Fosca ; Esposito, Floriana ; Pedreschi, Dino</contributor><creatorcontrib>Kadous, Mohammed Waleed ; Sammut, Claude ; Boulicaut, Jean-François ; Giannotti, Fosca ; Esposito, Floriana ; Pedreschi, Dino</creatorcontrib><description>We present a method of constructive induction aimed at learning tasks involving multivariate time series data. Using metafeatures, the scope of attribute-value learning is expanded to domains that contain instances that have some kind of recurring substructure, such as strokes in handwriting recognition, or local maxima in time series data. These substructures are used to construct attributes. Metafeatures are applied to two real-world domains: sign language recognition and ECG classification. Using a very generic set of metafeatures we are able to generate classifiers that are either comprehensible or accurate, producing results that are comparable to hand-crafted preprocessing and comparable to human experts.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540231059</identifier><identifier>ISBN: 3540231056</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540301151</identifier><identifier>EISBN: 9783540301158</identifier><identifier>DOI: 10.1007/978-3-540-30115-8_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; constructive induction ; Exact sciences and technology ; Information systems. Data bases ; machine learning ; Memory organisation. Data processing ; Software ; time series</subject><ispartof>Lecture notes in computer science, 2004, p.192-204</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1f6abef9948c69b179551391079c4345cba53a29f3fd2a67b4291623815167b83</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-30115-8_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-30115-8_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16144316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Boulicaut, Jean-François</contributor><contributor>Giannotti, Fosca</contributor><contributor>Esposito, Floriana</contributor><contributor>Pedreschi, Dino</contributor><creatorcontrib>Kadous, Mohammed Waleed</creatorcontrib><creatorcontrib>Sammut, Claude</creatorcontrib><title>Constructive Induction for Classifying Time Series</title><title>Lecture notes in computer science</title><description>We present a method of constructive induction aimed at learning tasks involving multivariate time series data. Using metafeatures, the scope of attribute-value learning is expanded to domains that contain instances that have some kind of recurring substructure, such as strokes in handwriting recognition, or local maxima in time series data. These substructures are used to construct attributes. Metafeatures are applied to two real-world domains: sign language recognition and ECG classification. Using a very generic set of metafeatures we are able to generate classifiers that are either comprehensible or accurate, producing results that are comparable to hand-crafted preprocessing and comparable to human experts.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>constructive induction</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>machine learning</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>time series</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540231059</isbn><isbn>3540231056</isbn><isbn>3540301151</isbn><isbn>9783540301158</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1PwzAMhsOXxBj7Bxx64RiI46Stj6jiY9IkDoxzlGbJFNjaqRlI-_ekG77Yfv3K0vswdgfiAYSoHqmqOXKtBEcBoHltpDhjN5iVowDnbAIlAEdUdMFm2T_eJILQdMkm2SU5VQqv2SylL5ELSAuSEyabvkv74cft468v5t1qnPquCP1QNBubUgyH2K2LZdz64sMP0adbdhXsJvnZf5-yz5fnZfPGF--v8-ZpwR1KvecQStv6QKRqV1ILFWkNSCAqcgqVdq3VaCUFDCtpy6pVkqCUWOc8eatxyu5Pf3c2ObsJg-1cTGY3xK0dDiYHVgqhzD558qV86tZ-MG3ffycDwoz0TKZh0GQe5gjLjPTwD76BWzg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kadous, Mohammed Waleed</creator><creator>Sammut, Claude</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Constructive Induction for Classifying Time Series</title><author>Kadous, Mohammed Waleed ; Sammut, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1f6abef9948c69b179551391079c4345cba53a29f3fd2a67b4291623815167b83</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>constructive induction</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>machine learning</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadous, Mohammed Waleed</creatorcontrib><creatorcontrib>Sammut, Claude</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadous, Mohammed Waleed</au><au>Sammut, Claude</au><au>Boulicaut, Jean-François</au><au>Giannotti, Fosca</au><au>Esposito, Floriana</au><au>Pedreschi, Dino</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Constructive Induction for Classifying Time Series</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><spage>192</spage><epage>204</epage><pages>192-204</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540231059</isbn><isbn>3540231056</isbn><eisbn>3540301151</eisbn><eisbn>9783540301158</eisbn><abstract>We present a method of constructive induction aimed at learning tasks involving multivariate time series data. Using metafeatures, the scope of attribute-value learning is expanded to domains that contain instances that have some kind of recurring substructure, such as strokes in handwriting recognition, or local maxima in time series data. These substructures are used to construct attributes. Metafeatures are applied to two real-world domains: sign language recognition and ECG classification. Using a very generic set of metafeatures we are able to generate classifiers that are either comprehensible or accurate, producing results that are comparable to hand-crafted preprocessing and comparable to human experts.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-30115-8_20</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, p.192-204
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16144316
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
constructive induction
Exact sciences and technology
Information systems. Data bases
machine learning
Memory organisation. Data processing
Software
time series
title Constructive Induction for Classifying Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Constructive%20Induction%20for%20Classifying%20Time%20Series&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Kadous,%20Mohammed%20Waleed&rft.date=2004&rft.spage=192&rft.epage=204&rft.pages=192-204&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540231059&rft.isbn_list=3540231056&rft_id=info:doi/10.1007/978-3-540-30115-8_20&rft_dat=%3Cpascalfrancis_sprin%3E16144316%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540301151&rft.eisbn_list=9783540301158&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true